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Abstract: This study introduces a novel enhancement to the Kalman filter algorithm by
integrating it with Radial Basis Function neural networks to improve numerical weather
prediction models. Traditional Kalman filters frequently underperform when used by
dynamical systems due to their reliance on fixed covariance matrices, resulting in inaccura-
cies and forecast uncertainty. The proposed modified Kalman filter utilizes Radial Basis
Function neural networks to estimate covariance matrices adaptively during the filtering
process. This self-adaptive computational system enables the simultaneous targeting of
the systematic and the remaining non-systematic parts of the forecast error, producing an
innovative and efficient post-process strategy. The suggested methodology is evaluated on
predictions of 10-meter wind speed and 2-meter air temperature obtained from the Weather
Research and Forecasting model for observation stations in northern Greece. The derived
results demonstrate a significant reduction in systematic error, as the bias decreased by
up to 88% for 10-meter wind speed and 58% for 2-meter air temperature. Additionally,
the forecast variability was successfully mitigated, with the RMSE reduced by 39% and
40%, respectively. Compared to the traditional Kalman filter, which exhibited increased
RMSE in several cases and failed to control forecast uncertainty, the proposed approach
consistently outperformed by providing stable and reliable predictions across all examined
scenarios. These improvements validate the robustness of the method in comparison to con-
ventional techniques, highlighting its potential to produce reliable and stable predictions
for environmental applications.

Keywords: air temperature; post-process algorithms; Radial Basis Function neural
networks; Kalman filters; Weather Research and Forecasting model; wind speed

1. Introduction
The accurate and stable forecasts produced by numerical weather prediction (NWP)

models are frequently employed worldwide to simulate global environmental conditions
and support various vital applications, including atmospheric dispersion analysis and
wildfire modeling. However, when the forecast pertains to a specific local area, NWP
models fail to produce high-quality predictions mainly due to the multiparametric feature
of the problem solved. Among others, the problem is significantly influenced by the initial
and lateral boundary conditions [1].
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One possible solution to tackle these issues might be model resolution enhancement,
which would rapidly increase the computational cost of the approach but would not
guarantee its success. An alternative strategy would be to utilize post-processing algorithms
and assimilation systems to enhance the model’s direct output or its initial conditions,
respectively. Toward this, Dong et al. [2] introduced a hybrid assimilation system that
leverages machine learning to boost numerical weather prediction models, effectively
addressing the shortcomings of classic methodologies. In the same direction, Rojas-Campos
et al. [3] employed deep learning techniques to post-process NWP precipitation forecasts,
achieving substantial improvements in predictive reliability. Krasnopolsky [4] offered a
detailed analysis of machine learning applications in data assimilation, model physics, and
the post-processing of model outputs, stressing their revolutionary potential for improving
weather prediction and atmospheric science. Ladino-Moreno et al. [5] demonstrated the
efficacy of combining Monte Carlo Dropout models with deep learning architectures for
complex systems like urban hydraulics, while Yanfatriani et al. [6] emphasized the need
for robust forecasting systems to tackle extreme rainfall trends and hydrometeorological
disasters in tropical regions. Consequently, these studies highlight the growing importance
of computational intelligence algorithms in enhancing the NWP model’s accuracy and
addressing complex environmental challenges.

The proposed methodology is a novel post-processing strategy. More specifically, it
aims to improve the predictions of an NWP model for the weather parameters of wind speed
and air temperature by addressing both the systematic and the remaining non-systematic
components of the forecast error. Systematic errors, or biases, represent consistent and pre-
dictable discrepancies that stem from inherent limitations in the model, such as inaccurate
parameterizations or incomplete representation of physical processes. These errors are
stable under specific conditions and can often be identified and reduced using techniques
like bias correction or model recalibration.

On the contrary, non-systematic errors are unpredictable, particularly affecting com-
plex parameters like wind speed and air temperature. For wind speed, such errors may
arise from the interplay of meteorological factors, including turbulence, convergence zones,
and rapid atmospheric fluctuations that are challenging to capture in numerical models.
Similarly, for air temperature, non-systematic errors frequently result from unresolved
small-scale phenomena, such as local land-use changes, urban heat effects, or sharp temper-
ature gradients near coastal regions. Their random and chaotic nature presents a significant
challenge to mitigation. Effectively addressing both error types is critical to achieving more
reliable and accurate predictions of these key atmospheric variables.

The initial objective has been thoroughly explored and addressed using various meth-
ods like Artificial Neural Networks (ANNs) [7,8] or advanced statistical models [9,10].
However, in this study, a non-linear Kalman filter is applied. Kalman filters (KFs) are
commonly used to minimize systematic errors [11–13] as they are considered a statistically
optimal sequential technique that reduces the associated biases by integrating current
predictions with recursive observations through weights [14]. Additionally, another key
advantage of KF algorithms is their minimal CPU memory requirements, which offer
significant benefits in many applications.

In many circumstances though, Kalman filters fail to detect and thereby control the
forecast error variability [15], resulting in unstable final predictions due to the remaining
uncertainty. Partly, this is a result of the filter’s preliminary hypotheses, which frequently
require constant covariance matrices that are determined prior to using the KF algorithm.
This methodology, however, is unsuccessful when the study concerns dynamical systems
as in such cases, the error in the measurements varies because of external factors.
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To circumvent this challenge and restrain the remaining white noise, the proposed
methodology modifies the non-linear Kalman filter by incorporating Radial Basis Function
(RBF) neural networks to update the covariance matrices during the filtering process. This
modified Kalman filter integrates RBF neural networks to create a novel self-adaptive
framework that continuously adjusts covariance matrices based on real-time input, en-
abling the algorithm to account for the evolving nature of forecast errors. Unlike existing
methodologies—which often target only systematic or non-systematic errors—this ap-
proach simultaneously addresses both components, ensuring a holistic improvement in
model accuracy. Furthermore, the proposed method leverages a hybrid computational
intelligence framework, bridging the adaptability of machine learning with the statistical
robustness of Kalman filtering. This dual-targeting capability sets the technique apart as it
not only reduces biases but also mitigates the variability and uncertainty associated with
random, non-systematic errors.

The suggested system was assessed via an innovative time-window process. In
particular, the modified Kalman filter is applied for 10-meter wind speed and 2-meter air
temperature forecasts obtained from two different domains of the Weather Research and
Forecasting (WRF) model and various observation stations located in the Thessaloniki
region (northern Greece). The extracted results are compared with those derived from the
non-linear Kalman filter utilizing fixed covariance matrices, through a series of statistical
indicators, to measure the degree of improvement offered by the proposed strategy. The
suggested approach demonstrates a significant reduction in forecast error metrics, including
bias and Root Mean Square Error, showcasing its ability to produce more accurate and
stable predictions in complex and dynamic environmental scenarios.

The structure of this study can be summarized as follows: In Section 2, the Weather Re-
search and Forecasting model is presented along with a thorough analysis of the suggested
methodology. Section 3 provides the main features of the Kalman filter algorithm alongside
a detailed analysis of a non-linear Kalman filter. Section 4 introduces the modified Kalman
filter based on RBF NNs, whereas the time-window process is presented in Section 5. The
obtained results for the various case studies are discussed extensively in Section 6, while
in Section 7, the drawn conclusions are recapped. Finally, Section 8 highlights the key
elements and achievements of this study.

2. Materials and Methods
The weather numerical model WRF is presented in this section along with a detailed

analysis of the proposed methodology.

2.1. Weather Numerical Model WRF

The Weather Research and Forecasting model is a numerical non-hydrostatic system
that generates high-quality atmospheric predictions used in a variety of atmospheric
applications [16–18]. More thoroughly, the WRF [19] employs the Advanced Research
dynamic solver and is run by the Department of Meteorology and Climatology at Aristotle
University of Thessaloniki to generate operational numerical weather forecasts. This
modeling system was initially developed as part of the Wave4Us [20] project and effectively
applied in several studies on extreme weather incidents in the Mediterranean Sea [21–23]
and the hydrography of the Thermaikos Gulf in northern Greece [24].

The forecasts are generated from three one-way nested domains that encompass the
following: (a) Europe, the Mediterranean Sea Basin, and Northern Africa (Do1); (b) a
significant portion of the central and eastern Mediterranean, including all of Greece (Do2);
and (c) northern Greece and adjacent regions (Do3). These domains have horizontal grid
spacings of 15 km × 15 km, 5 km × 5 km, and 1.667 km × 1.667 km (longitude–latitude),
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respectively. Moreover, high-resolution data from the US Geological Survey (USGS) at
30 × 30 arcseconds are used to define the land–sea mask, land use, and topography.

The initial and boundary conditions for the outer model domain (Do1) are derived
from the operational analysis and predictions of the GFS/NCEP for the 12:00 UTC forecast
cycle at a resolution of 0.25◦ × 0.25◦ (longitude–latitude). The boundary conditions for
Do2 are provided by the forecasts of Do1, while those for Do3 are supplied by Do2. Sea
surface temperatures are constrained by the daily global analyses of NCEP at a resolution of
1/12◦ × 1/12◦ and remain constant throughout each WRF forecast cycle. The model utilizes
39 sigma levels with improved vertical resolution in the lower troposphere, extending to a
top pressure of 50 hPa.

The physical parameterizations incorporate the Eta Ferrier [25] and the Betts–Miller–
Janjic [26,27] schemes for the microphysics and cumulus convection (limited to Do1 and
Do2). The Mellor–Yamada–Janjic [26,28,29] parameterization is employed for the boundary
layer processes, while the Monin–Obukhov (Eta) [26,30] scheme represents the surface layer.
Longwave and shortwave radiations are parameterized using the RRTMG [31] scheme,
while soil processes are represented by the Unified NOAH land surface model [32], which
utilizes four layers to a depth of 2 meters.

The Weather Research and Forecasting simulation system produces results for var-
ious environmental parameters, such as air temperature, mean sea level pressure, wind
speed, and azimuth, as well as relative humidity. However, this study focuses on the
10-meter wind speed and 2-meter air temperature, which are predicted by the domains
Do2 and Do3 (Figure 1a). These weather parameters were selected due to their pivotal
role in various environmental and engineering applications, including renewable energy
forecasting, maritime operations, and urban climatology. Furthermore, unlike precipitation-
related variables such as accumulated rainfall or rain rate, which are heavily influenced by
convective processes and microphysical uncertainties, wind speed and air temperature
primarily depend on large-scale atmospheric dynamics and surface interactions. There-
fore, they are more suitable for assessing systematic and non-systematic forecast errors in
NWP models.

The notable spatiotemporal variability and rapid fluctuations in wind speed—caused
by the physiographic characteristics of the region of interest as well as by meteorological
factors like fronts, convergence lines, and thunderstorms—particularly near the land/sea
surface, make accurate predictions challenging, even with high-resolution numerical mod-
eling. Inadequate representation of the land surface characteristics, whether due to hor-
izontal resolution limitations or recent changes in land use, can introduce systematic
biases in the prediction of 2-meter air temperature, especially in areas where these features
vary significantly.
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Figure 1. (a) The different domains of the WRF model. The images below show the topography (m) 
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Figure 1. (a) The different domains of the WRF model. The images below show the topography (m)
of the domains (b) Do2 and (c) Do3, along with the observation stations (c).

2.2. Methodology

The main objective of this study is to introduce a modified Kalman filter based on
Artificial Neural Networks. More specifically, a non-linear Kalman filter is applied in con-
junction with Radial Basis Function neural networks to improve the forecasting capacities
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of the WRF simulation system regarding the weather parameters of 10-meter wind speed
and 2-meter air temperature.

Initially, the non-linear Kalman implementation targets the simulation’s systematic
error, expressed as a quadratic polynomial of the model’s previous prediction, aiming to
decode and thus eliminate that bias. During that process, the covariance matrices are not
fixed but updated via RBF structures. More precisely, two distinct RBF architectures are
utilized to construct a non-linear adaptation rule that correlates the previous and current
state of the covariance matrices. The first RBF concerns the evolution of the measurement
covariance matrix, whereas the second concerns the evolution of the state covariance matrix.
Here, the utilized RBF topologies express non-linear functions that need to be minimized to
achieve an accurate approximation of the covariance matrices in every step of Kalman filtering.
Through this process, the proposed technique aims to detect the remaining non-systematic
part of the prediction error to constrain its variability and the associated forecast uncertainty.

When the filtering process, based on a specified Training data set, is finalized, the
systematic error of the simulation is obtained and added to the model’s prediction to
produce the improved forecasts from the modified Kalman filter, based on a Testing data
set. Finally, the extracted results are contrasted with those obtained from the non-linear
Kalman filter with stable covariance matrices to measure the efficiency of the suggested
approach. The key steps of the proposed strategy are summarized in the diagram of the
method (Figure 2).
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2.3. Study Area and Observation Stations

To implement the suggested algorithm, the novel optimization system requires both
the (recorded) observations and the corresponding model predictions. The forecasts are
obtained from the numerical weather model WRF, whereas the required observations are
from different stations located in the Thessaloniki region in northern Greece (Figure 1c). To
be exact, the environmental parameters under study are derived from the AUTH (Aristotle
University of Thessaloniki) and the AXIOS (Axios River Delta) stations of the Department
of Meteorology and Climatology of AUTH (Figure 1c). The main characteristics of the
observation stations are presented in Table 1.

Table 1. Key features of the meteorological stations.

Stations Location Latitude (◦N) Longitude (◦E) Time Interval

AUTH Thessaloniki–Campus of AUTH 40.63177 22.95755 1 h
AXIOS Thessaloniki–Delta of Axios River 40.55157 22.74187 1 h

The Thessaloniki region was selected as the study area due to its diverse meteorological
and topographical characteristics, which make it an ideal evaluation site for assessing post-
processing techniques in numerical weather prediction models. Thessaloniki is a coastal city
influenced by both continental and marine atmospheric dynamics, resulting in significant
spatial and temporal variability in wind speed and air temperature. These variations are
driven by complex interactions between synoptic-scale weather patterns, local topography,
and land–sea contrasts.

The AUTH and AXIOS stations were selected for their high-quality, uninterrupted
observations, which are essential for effectively training and validating the proposed
modified Kalman filter. The forecasts at these locations exhibit significant variability in
simulation errors, making the two stations particularly well-suited for evaluating the
effectiveness of the suggested optimization strategy.

Furthermore, the selection of these two stations, representing distinct environmental
settings—an urban location (AUTH) and a coastal plain (AXIOS)—enables a broader
evaluation of the method’s adaptability under different local meteorological conditions.
Finally, this selection also ensures a robust assessment of the methodology’s ability to
generate reliable and accurate final predictions in complex environments, overcoming key
limitations of NWP models and existing forecasting techniques, like the Kalman filter.

3. Kalman Filter
This section presents the fundamentals of Kalman’s theory along with a thorough

analysis of a non-linear Kalman filter with stable covariance matrices.

3.1. Fundamentals of the Kalman Filter Theory

Let xt be a vector (the state vector) that describes an unknown process at time t and
yt a known pertinent vector at the same time. It is assumed that the evolution of the state
vector x from time t − 1 to t is given by the following system equation:

xt = Ft ∗ xt−1 + wt, (1)

whereas its correlation with the observable vector yt is given by the measurement equation
(or observation equation):

yt = Ht ∗ xt + vt. (2)
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where Ft expresses the system transition matrix, and Ht is the corresponding measurement
transition matrix. Both of them must be determined before the application of the filter,
and the same goes for the covariances matrices Qt and Rt of the random vectors wt and vt,
respectively. The variables wt and vt are non-systematic parts of the model error that follow
the Gaussian distribution with a zero mean. Furthermore, they are independent, which
denotes that E(wq·vk) = 0 for any q, k ∈ N, and also time-independent, which implies that
E(wq·wk) = 0 and E

(
vq·vk

)
= 0 for all q ̸= k.

Kalman’s theory [33–35] provides a recursive method for estimating the state vector
xt, utilizing the available (recorded) observation(s) stored in vector yt. Roughly speaking,
the Kalman filter algorithm can be summarized in three stages:

1. Initialization stage: here, initial values for the state vector x and its error covariance
matrix P at time t − 1 are determined;

2. Prediction stage: based on the defined values, an optimal estimation for the variables
x and P at time t is given by the following:

x̂t/t−1 = Ft ∗ x̂t−1 (3)

Pt/t−1 = Ft ∗ Pt−1 ∗ Ft
T + Qt (4)

where Equations (3) and (4) are called prediction equations and x̂t−1 = E[xt−1];
3. Correction stage: when vector yt is available, the corrected values for the state vector

and its error covariance matrix, at time t, are outlined below:

x̂t/t = x̂t/t−1 + Kt ∗ (yt − Ht ∗ x̂t/t−1), (5)

Pt = (I − Kt ∗ Ht) ∗ Pt/t−1 (6)

where
Kt = Pt/t−1 ∗ Ht

T ∗
(

Ht ∗ Pt/t−1 ∗ Ht
T + Rt

)−1
. (7)

Equations (5) and (6) are known as correction (update) equations and conduct the third
and final stage of the Kalman filter process. Equation (7) presents the Kalman gain, which
is the most vital parameter of the filtering procedure as it indicates the amount of influence
the available observation will exert on the state vector prediction. More thoroughly, a small
value for the Kalman gain denotes a high level of uncertainty in the measurements.

To utilize the KF algorithm, initial values must be defined for the state vector xt,
its error covariance matrix Pt, and additionally for the covariance matrices Qt and Rt.
However, their effects on filter performance have different magnitudes. Both xt and Pt

converge to their actual values eventually, thus, their effect is not significant. In contrast,
that is not the case with the covariance matrices Rt and Qt as their impact on the Kalman
gain will determine the degree of filter adjustment to any possible new conditions [36].
Consequently, the chosen adaptation rule is of utmost importance since it will have a severe
effect on the filter’s successful implementation.

Various approaches have been developed to update these quantities. Some researchers
utilize predefined and fixed covariance matrices before initiating the filtering process [34],
while others dynamically update them during the procedure using the most recent seven
values of wt = xt − xt−1 and vt = yt − xt [11]. Here, for the non-linear Kalman filter
implementation, the initial strategy is employed.

3.2. A Non-Linear Kalman Filter with Stable Covariance Matrices

To decode the standard error in the direct outputs of the WRF model, a non-linear
Kalman filter is utilized. More specifically, that error (yt) is expressed as a quadratic
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polynomial [37] of the model’s previous prediction (10-meter wind speed or 2-meter air
temperature) predt−1 [38]:

yt = x0,t + x1,t ∗ predt−1 + x2,t ∗ pred2
t−1 + v(t) (8)

where yt represents the disparity between the observed measurement ( recorObservation)
and the associated prediction generated by the simulation system:

yt = recorObservationt − predt

Equation (8) expresses the measurement equation with the state vector xt =

[x0,t x1,t x2,t] and transition matrix Ht =
[
1 predt−1 pred2

t−1

]
. On the other hand, the

system transition matrix is set to be Ft = 1 since the progression of the state vector over
time is uncertain, caused by the lack of pertinent knowledge.

Therefore, the system and the measurement equations for the quadratic variation of
the non-linear Kalman filter are defined as follows:

xt = [x0,t−1x1,t−1x2,t−1]
T + wt (9)

and
yt =

[
1predt−1 pred2

t−1] xt + vt. (10)

The next step concerns the determination of the initial values. To begin with, as there is
insufficient information about the previous condition of the state vector, it is assumed that
its value is zero, x0 = 0. Furthermore, regarding its error covariance matrix P at the same
time, this study suggests a diagonal matrix with relatively large values, which denotes
poor initial guesses. More specifically, the following is proposed:

P0 =

4 0 0
0 4 0
0 0 4

.

The selection of the covariance matrices, though, is not that clear and thus requires a
more careful analysis. Here, their values are considered stable during the filtering procedure
and defined before using the Kalman algorithm [34,39]. In particular, a series of sensitivity
tests are conducted with different combinations of Q and R to determine the optimal one
for the various weather parameters. The extracted results reveal that for the 10-meter
wind speed and the 2-meter air temperature, the optimal values were Rt = 4 and Qt = I3,
respectively, where I3 expresses the identity matrix.

4. The Proposed Methodology
The strategy of fixed covariance matrices, as used by the quadratic Kalman filter

presented in Section 3, is inappropriate for dynamic systems because the error in the
measurements diverges due to a variety of external factors [40]. Thus, an alternative
approach is necessary. More precisely, to update the variables R and Q during the filtering
process, this study modifies an estimation rule suggested by Akhlaghi et al. [41].

The initial methodology provides the following adaptation formula:

Rt = αRt−1 + (1 − α)
(

εtε
T
t + Ht/t−1Pt/t−1HT

t/t−1

)
(11)

Qt = αQt−1 + (1 − α)
(

KtdtdT
t KT

t

)
(12)
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where the quantity a is a fixed positive (memory) parameter, 0 < a ≤ 1, which influences
the effect of the preceding and subsequent states on the current outcome; and the quantities
εt = yt − Ht x̂t/t and dt = yt − Ht x̂t/t−1 are the residual and the innovation, respectively.
The residual is defined as the difference between the recorded observation and its projected
value based on x̂t/t, while the innovation presents the corresponding discrepancy between
the observed value and its forecasted value derived from x̂t/t−1. More information about
the estimation rule can be found in Akhlaghi et al. [41].

Before this study, Donas et al. [42] proposed a hybrid Extended Kalman Filter that
utilizes Equations (9) and (10) to update the covariance matrices. The main novelty of
that research was the determination of the memory parameter, α, through various ANN
architectures and in particular via the Radial Basis Function and FeedForward neural
networks. These parametrized ANNs were trained for multiple values of that parameter
to identify the optimal one, which afterward was applied by an Extended Kalman Filter
to estimate the covariance matrices in every step of the filtering process. The results
revealed two key findings: Firstly, the value of the memory parameter α and the linear
correlation that creates significantly affect the efficiency of the hybrid system. Secondly,
the RBF structure emerged as the most effective ANN topology, primarily due to its low
computational cost.

To eliminate dependence on the memory parameter and the linear assumptions it
imposes, this study introduces an innovative estimation rule for the covariance matrices R
and Q by utilizing Radial Basis Function neural networks. Specifically, RBFs are integrated
into the filtering procedure, enabling a non-linear association between the previous and
current states of the covariance matrices that replace the parameter-dependent approach.
This modification exploits the advantages of machine learning and statistical filtering,
providing a robust, adaptive, and computationally efficient post-processing algorithm.

4.1. Radial Basis Function Neural Networks

Radial Basis Function neural networks are a unique and widely used type [43–45]
of ANN that are characterized by their simple structure and various efficient training
algorithms [46]. A typical RBF structure consists of one input layer, one hidden layer with
radial (basis) functions (φ) as activation functions, and one linear output layer, as illustrated
in Figure 3.
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At the outset, the RBF network calculates the distance between the tth input vector (Xt)
and each centroid (Cj) in the hidden layer. This outcome is then multiplied by the so-called
width (bj) parameter, which defines the stretching degree of the transfer function (stretch
or compress). Consequently, the net input for the jth neuron is computed by the following:

netinputj =
∣∣∣∣∣∣Xt − Cj

∣∣∣∣∣∣bj, (13)

where ||◦|| represents the Euclidean distance.
Through the activation function, each net input is transformed and generates the

output of its corresponding neuron, which is multiplied by the respective external weight
(Vj) that connects the j neuron of the hidden layer with the output layer. Afterward, the
produced results sum up along with a scalar parameter c (bias of the output layer) and
form the direct output of the Radial Basis Function neural network:

Yt = ∑K
j=1 Vj φ

(∣∣∣∣Xt − Cj
∣∣∣∣bj

)
+ c, (14)

where K is the total number of centroids.
Based on the above, Equations (11) and (12) create the proposed modified estimation

rule for the covariance matrices Rt and Qt by utilizing the following transformation:

Rt = Rt−1 + Yt (15)

Qt = Qt−1 + Ŷt (16)

replacing Equation (14) with Equations (15) and (16), the suggested adaptive rule becomes
the following:

Rt = Rt−1 + ∑K
j=1 Vj φ

(∣∣∣∣Xt − Cj
∣∣∣∣bj

)
+ c (17)

Qt = Qt−1 + ∑K
j=1 V̂j φ

(∣∣∣∣∣∣X̂t − Ĉj

∣∣∣∣∣∣b̂j

)
+ ĉ, (18)

where Xt =
[
εt Ht/t−1 PT

t/t−1

]T
and X̂t =

[
KT

t dt
]T are the tth input (column) vectors

for the Radial Basis Function neural networks. In particular, the vector Xt concerns the
evolution of the measurement covariance matrix Rt, while X̂t concerns the corresponding
evolution of the state covariance matrix Qt. Note here that, since we work in a three-
dimensional state space (quadratic KF), the variable Pt/t−1 is a 3 × 3 matrix and, thus, it
must be converted to a column vector before it is utilized as a component of the Xt input
vector. Additionally, here, Kt is a 3 × 1 column vector.

Following the discussed procedure, the next step is to define the size of the RBF net-
work, i.e., the number of centroids, and the corresponding activation function. Regarding
the activation function, the Gaussian, φ(x) = e−x2

, is employed because of its widespread
preference in RBF modeling [47]. However, selecting the centroids is less straightforward.
To address this, a series of experiments were conducted, varying the number of centroids
from 5 to 20. The optimal configuration was the one that produced the lowest training error.

The results indicated that ten centroids provided the best balance for the weather
parameters under study, achieving a trade-off between computational efficiency and the
complexity of forecast error patterns. While increasing the number of centroids beyond ten
yielded slight improvements in accuracy, the gains were marginal and came at a signifi-
cantly higher computational cost, particularly considering the iterative nature of the Kalman
filtering process. Conversely, using fewer than ten centroids led to a marked reduction
in performance as the network struggled to capture the non-linear relationships between
forecast errors and evolving covariance matrices. Hence, choosing ten centroids ensured
sufficient generalization of the RBF structure while maintaining computational feasibility.
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Once the optimal RBF topology is identified, the final stage of the suggested approach
involves the determination of the network parameters through a training algorithm. The
selected learning rule aims to minimize the quantities Yt and Ŷt to achieve an accurate
approximation for the covariances matrices in time t based on Equations (17) and (18).
Typically, two main categories exist for training a Radial Basis Function neural network: the
first procedure is frequently faster and divides the training process into two stages. Initially,
the number and the locations of the hidden layer’s centroids are defined; then, the synaptic
weights between the hidden and the output layer are specified via linear regression. In
contrast, the second approach aims to determine all the network parameters simultaneously
using non-linear optimization algorithms [48–50]. Here, the second strategy is applied.

More thoroughly, the Levenberg–Marquardt (LM) is implemented as a training al-
gorithm. LM can be considered as a combination of the steepest descent method and
the Gauss–Newton algorithm, inheriting the positive traits of both. To be more precise,
Levenberg–Marquardt carries out a combined training process: in high-complexity regions,
it transitions to the steepest descent algorithm until the local curvature is suitable for a
quadratic approximation. At this point, it roughly transforms into the Gauss–Newton
algorithm, which can accelerate convergence considerably [51].

The key features of the Levenberg–Marquardt training algorithm are summarized in
the following diagram (Figure 4).
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In the figure, the following notation applies:

• W is a column vector that contains the parameters of the RBF neural network,

W = [C, b, V, c] or W =
[
Ĉ, b̂, V̂, ĉ

]
. Note here that the locations of the estimated

centroids must be within the range of the input vector and also that the values of the
widths must be positive;

• f is a non-linear function expressed as a direct output of the RBF, f = ∑K
j=1 Vjφ

(∣∣∣∣∣∣Xt − Cj

∣∣∣∣∣∣bj

)
+c or f = ∑K

j=1 V̂j φ
(∣∣∣∣∣∣X̂t − Ĉj

∣∣∣∣∣∣b̂j

)
+ ĉ;

• J is the Jacobian of the non-linear function f ;
• µ is a positive variable that ensures the reversibility of the JT J matrix. Here, the initial

value for the combination parameter was equal to µ = 0.001.

Another aspect that needs to be clarified before the presentation of the modified
Kalman filter is the phenomenon of over-fitting. Here, the RBF networks are employed
exclusively as non-linear function approximators to update the covariance matrices of the
Kalman filter and not as predictive models for the environmental parameters under study.
Therefore, issues such as over-fitting, which typically arise when a model is over-trained
on specific data, are inherently avoided.

4.2. The Modified Kalman Filter

Applying the above strategy to the quadratic Kalman filter, presented in Section 3, the
modified Kalman filter is constructed. More specifically, the suggested optimization system
performs the following steps:

1. Initialization. For t = 0, set

x̂0 = E[x0],

P0 = E
[
(x0 − E[x0])(x0 − E[x0])

T
]
,

R0, Q0

2. Iteration. For t = 1, 2, . . . , Training data compute:

Prediction Step.
x̂t/t−1 = Ft ∗ x̂t−1 (19)

Pt/t−1 = Ft∗ Pt−1 ∗ FT
t−1 + Qt−1 (20)

Correction Step.
dt = yt − Ht ∗ x̂t/t−1 (21)

Kt = Pt/t−1 ∗ HT
t/t−1∗

[
Ht/t−1∗Pt/t−1∗HT

t/t−1 + Rt

]−1
(22)

x̂t/t = x̂t/t−1 + Kt ∗ [yt − Ht x̂t/t−1] (23)

εt = yt − Ht ∗ x̂t/t (24)

Apply LM after converting the Pt/t−1 to a column vector, and obtain the minimized Yt

(minYt) based on Xt =
[
εt Ht/t−1 PT

t/t−1

]T
.

Update the measurement noise covariance matrix and recalculate the Kalman gain:

Rt =|Rt−1 + minYt| (25)

Kt = Pt/t−1 ∗ HT
t/t−1 ∗

[
Ht/t−1∗Pt/t−1∗HT

t/t−1 + Rt

]−1
(26)

Apply LM and obtain the minimized Ŷt (minŶt) based on X̂t =
[
KT

t dt
]T .
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Update the state covariance matrix and make the second state correction:

Qt = |Q t−1 + minŶt
∣∣ (27)

x̂t/t = x̂t/t−1 + Kt ∗ [yt − Ht x̂t/t−1] (28)

Update the error covariance matrix:

Pt/t = [I3 − Kt ∗ Ht/t−1] ∗ Pt/t−1 (29)

Following the application of the modified Kalman Filter, the systematic error of
the WRF model at time t, represented as x̂t, is obtained. This component is added to
the model’s prediction at time t + 1, resulting in an enhanced forecast for the various
weather parameters.

Improvedpredt+1 = predt+1 + Ht+1 ∗ x̂t

The adaptive nature of the proposed method allows the creation of a vigorous, effi-
cient filter that effectively addresses both systematic and non-systematic forecast errors
by continuously adjusting to the evolving uncertainties inherent in numerical weather
prediction models. While Kalman filters and Radial Basis Function neural networks are
well-established techniques, this combined approach provides an innovative contribution
to the current landscape of weather forecasting methodologies. Specifically, it forms a
conceptual bridge between traditional data assimilation methods and contemporary deep
learning tools [52–54], like Transformer-based models and Graph Neural Nets, leveraging
their strengths to deliver a robust and complementary solution for advanced environmental
prediction systems.

The proposed modified Kalman filter is also designed to be a time-efficient computa-
tional system. The Kalman filter is inherently efficient, with a computational complexity
of O(dimstate3), with dimstate being the dimension of the state vector (here dimstate = 3).
This complexity arises due to the matrix inversion required in the update state. However,
its sequential nature makes it well-suited for real-time applications as it processes data
iteratively rather than in large batches.

Moreover, the RBF architecture, trained by the Levenberg–Marquardt algorithm, is
employed exclusively for covariance adaptation. This introduces an additional complexity
O
(

Iter ∗
(
C ∗ dimstate + C3)), with Iter being the number of LM’s iterations (in this case

Iter = 1), and C the number of centroids. Nonetheless, since training is performed periodi-
cally rather than at every filtering step, its impact on computational cost is substantially re-
duced. Therefore, by strategically integrating these elements, the proposed system achieves
an optimal balance between predictive accuracy and computational efficiency, making it
scalable and applicable to large-scale data sets without excessive processing demands.

5. Time-Window Process
To evaluate the efficiency of the proposed methodology, a time-window process is

utilized for various weather parameters derived from two different domains (Do2 and
Do3) of the WRF model and at two stations located in the Thessaloniki region, northern
Greece. More precisely, the suggested modified Kalman filter was applied to 10-meter wind
speed and 2-meter air temperature forecasts obtained at the locations of AUTH and AXIOS
stations for 2020. During this process, the stability of the proposed method is assessed
along with the degree of improvement it provides over classical forecasting methodologies,
based on a variety of statistical measures.
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Each time window applies Algorithm 1 using predetermined Training data sets and
forecasting intervals (Testing data). These hyper-parameters are not selected at random but
rather following a series of tests, the results of which are summarized in Table 2.

Algorithm 1: Time-Window Process

Initial data: {Inputs, Targets} → {Model’s Forecast, Observations}
Normalize the data: [−1, 1]
History and the Forecast data set definition
Maximum number of time windows: Max_tw = Time Windows − 1
Necessary matrix and vectors to store the results
Define the RBF NN neurons: Here, the number of neurons ranges from 5 to 20.

for qq = 0, . . . , Max_tw
Tr → (1 + qq) : Training data + qq Data set for the modified Kalman filter training.
Apply the modified Kalman filter Obtain the systematic error as x̂t.
Tr1 → Tr(end) + 1 : Tr(end) + Testing data Data set for the method’s assessment.

Denormalize the data Model predictions, recorded observations, and produced
predictions via modified filter.

Evaluate the method based on Tr1 and store the result Bias, RMSE, and Ns indices.
End

Store the aggregate results from every time window

Table 2. Main characteristics of the time-window process.

Temperature Time Windows Training Data Set Testing Data Set

AUTH Do2 3 375 18
AXIOS Do2 2 375 18
AXIOS Do3 3 470 18

Wind Speed Time Windows Training Data Set Testing Data Set

AUTH Do2 3 400 18
AUTH Do3 3 400 18
AXIOS Do2 3 600 18
AXIOS Do3 3 600 18

Analyzing the hyper-parameters (Table 2) of the time-window process, it is observed
that a fixed Training data set that covers all stations and weather parameters does not
exist. Therefore, the data necessary for the modified Kalman filter’s training procedure
vary. However, focusing on the Testing data sets and time windows, a different conclusion
is extracted. The executed experiments revealed that the ideal value for the forecasting
interval was stable and equal to eighteen observations, while, in most cases (except for
AXIOS Do2—Table 2), the corresponding ideal value for the time windows was three. The
selection of the time-window size plays a crucial role in the performance of the modified
Kalman filter as it determines the balance between the amount of training data available
for adaptation and the model’s responsiveness to new conditions. To assess its impact,
a sensitivity analysis was conducted by varying the time-window size from 1 to 5 while
keeping all other hyper-parameters constant.

The results indicate that a time window of 3 provides the optimal trade-off between
stability and forecast accuracy. When the time-window parameter was reduced to 1 or
2, the filter exhibited increased sensitivity to short-term variations, which led to unstable
covariance matrix updates and higher RMSE values. Conversely, increasing the time
window beyond 3 (e.g., 4 or 5) resulted in a loss of adaptability as the filter became less
responsive to evolving forecast errors.

Furthermore, the value of the time window determines the total number of improved
predictions that the proposed system will produce, based on a certain amount of Training
data. For instance, the hyper-parameters for the AUTH Do2 are Time Windows = 3,
Traning data set = 375, and Testing data set = 18, which implies fifty-four final forecasts
utilizing one thousand, one hundred, and twenty-five previous (training) data points
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(375 data points for each time window). For more clarity, the suggested procedure is
outlined in Algorithm 1 and in Appendix C.

Each Testing set consists of 18 consecutive prediction samples, representing an 18-hour
forecast horizon—a period that is operationally relevant in numerical weather predic-
tion. Although 18 samples may appear limited at first glance, the rolling nature of the
time-window approach ensures robust validation by capturing the temporal variability
inherent in weather data. Furthermore, the variation in Training set sizes (ranging from
375 to 600 samples) reflects the differing data availability and characteristics across the
various observation stations and domains. These sizes were optimized through extensive
sensitivity analyses to best suit the individual case studies. Given the sequential and
time-dependent nature of the utilized data, standard cross-validation techniques are less ap-
plicable; however, the suggested time-window strategy effectively serves as a tailored form
of cross-validation, ensuring that the validation process remains rigorous and reflective of
real-world forecasting conditions.

Validation Procedure

A rigorous validation procedure was employed to ensure the efficiency of the proposed
modified Kalman filter. The assessment was conducted using statistical measures that
quantify the degree of improvement provided by the method. The key statistical indicators
that were utilized are as follows:

• Bias of the forecasting values:

Bias =
∑N

t=1(obs(t)− f or(t))
N

where obs(t) presents the recorded observation at time t; f or(t) is the respective
forecast (improved forecast through the modified filter or model’s direct output); and
N the size of the forecasting data set. Bias is a crucial statistical measure for every
filtering process since we seek to eliminate the systematic error;

• Root Mean Square Error:

RMSE =

√
∑N

t=1(obs(t)− f or(t))2

N

This crucial indicator quantifies the model’s ability to estimate the general functioning
of the system, with a specific focus on the non-systematic part of the forecast error;

• Nash–Sutcliffe model efficiency coefficient:

Ns = 1 − ∑N
t=1(obs(t)− f or(t))2

∑N
t=1

(
obs(t)− obs

)2

where obs expresses the mean value of the (recorded) observations. The Nash–Sutcliffe
is a normalized statistic that fluctuates between −∞ and 1 and dictates the level of
concordance between observations and forecasts.

It should be noted that Earth Control Points (ECPs) were not utilized in this study.
Instead, the validation relied on direct comparisons between the observed data from the
AUTH and AXIOS stations and the corresponding forecasts generated by the WRF model.
To achieve this direct comparison and further ensure the consistency of the validation pro-
cess, the WRF model outputs were interpolated to the exact locations of the meteorological
stations. This approach minimizes discrepancies arising from differences in spatial scales
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and allows for a more accurate evaluation of the modified Kalman filter’s effectiveness in
improving local predictions.

6. Results
This section illustrates the results obtained from the proposed modified Kalman

filter for the parameters of 2-meter air temperature (Tem) and 10-meter wind speed (WS).
In particular, the following Figures 5–11 present the forecasting time series diagrams
(based on Testing data sets) for each time window, whereas Tables 3–6 below contain the
corresponding (average) values of the various evaluation indicators. It is crucial to note
at this point that the case study AUTH Do3 for the 2-meter air temperature was excluded
from this research due to the low non-systematic inaccuracy that was observed, implying
that using an ANN is not highly beneficial.

A thorough analysis for each time window is available in Appendices A and B,
respectively.

Table 3. Evaluation indicators. Average results from AUTH station, Do2 domain, for 2-meter air
temperature.

Average
Results–AUTH Do2 Bias RMSE Ns

Model −2.9420 3.1923 −1.8749
Kalman 1.1296 3.6239 −2.8826

Modified Kalman 0.6833 1.5844 0.4141

Table 4. Evaluation indicators. Average results from AXIOS station, Do2 and Do3 domains, for
2-meter air temperature.

Average
Results–AXIOS Do2 Bias RMSE Ns

Model −3.7458 4.0487 −2.2314
Kalman 9.1426 9.2855 −16.0506

Modified Kalman 2.5373 3.0586 −0.8557

Average
Results–AXIOS Do3 Bias RMSE Ns

Model −4.4672 4.8905 −5.8089
Kalman 4.8820 5.2990 −8.4395

Modified Kalman 1.6307 2.6914 −0.8372

Table 5. Evaluation indicators. Average results from AUTH station, Do2 and Do3 domains, for
10-meter wind speed.

Average
Results–AUTH Do2 Bias RMSE Ns

Model −1.7126 2.4256 −23.6023
Kalman 0.7395 1.6540 −10.2769

Modified Kalman 0.3858 1.4421 −7.5849

Average
Results–AUTH Do3 Bias RMSE Ns

Model −4.9319 6.3636 −9.4715
Kalman −1.1546 3.5911 −2.3361

Modified Kalman −0.3595 3.0696 −1.4395
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Table 6. Evaluation indicators. Average results from AXIOS station, Do2 and Do3 domains, for
10-meter wind speed.

Average
Results–AXIOS Do2 Bias RMSE Ns

Model −1.0767 1.6384 −5.3589
Kalman −1.2850 2.2946 −13.6531

Modified Kalman −0.1265 1.0561 −1.6278

Average
Results–AXIOS Do3 Bias RMSE Ns

Model −1.1446 1.4911 −2.1064
Kalman −0.7893 2.8227 −0.3158

Modified Kalman −0.0856 1.0898 −0.2628

6.1. Evaluation of 2-Meter Air Temperature Forecasts from WRF Do2 and Do3 Domains at AUTH
and AXIOS Stations

Analyzing the results obtained at the AUTH station, it is observed that the modified
Kalman filter significantly enhances the Do2 forecasts of the weather numerical model
WRF. Every evaluation indicator (Table 3) was noticeably improved. More specifically, the
average reduction in the bias index exceeds 75% (changing sign), which implies that the
suggested approach successfully reduces the standard error of the simulation. Furthermore,
the modified filter was able to detect and, thus, constrain the non-systematic part of the
forecast error as the RMSE assessor decreased by 50%. On the other hand, the corresponding
value of RMSE from the non-linear Kalman filter implementation increased by almost 14%,
which dictates poor final predictions.

The above can also be concluded by studying the time series diagram (Figure 5).
The predictions produced by the modified Kalman filter describe the morphology of the
recorded observations (Figure 5—Obs) more accurately in comparison to those derived
from the WRF numerical system. Hence, the proposed methodology not only improves the
forecasting capabilities of the NWP model in use but also avoids the limitations of classic
Kalman filters.
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Moving to the AXIOS station, the proposed filter exhibits similar behavior. Focusing
on the Do2 (Table 4—Do2), it is revealed that Kalman’s initial implementation fails to
improve the forecasting capacity of the WRF model as there is a huge increase in every
evaluation indicator. In contrast, the enhancement offered by the modified Kalman filter is
considerable. More accurately, the largest improvement exceeded 60% and concerns the Ns
index (from −2.2314 to −0.8557), while the minimum improvement concerns the RMSE
assessor (from 4.0487 to 3.0586) and is about 24%.

The proposed filter contributes to a greater extent in Do3 (Table 4—Do3). In this case
study, the bias and RMSE indices decreased by 63% (changing sign) and 45%, respectively,
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while the corresponding values from KF’s application deteriorated by 9% and 8%. This
denotes that the modified Kalman filter overcomes the drawbacks of classic KFs as it
reduces the standard error and additionally constrains the remaining forecast uncertainty,
providing stable and secure forecasts.

The time series diagrams (Figures 6 and 7) demonstrate the same results. In both cases,
the distribution of the modified filter’s predictions is nearly identical to the corresponding
distribution of the recorded observations. However, it is worth noting that during the first
11 h (Figure 7) of the forecasting period, the improved predictions from the proposed filter are
similar to those produced by the non-linear KF when the WRF forecasts of Do3 are used.

6.2. Evaluation of 10-Meter Wind Speed Forecasts from WRF Do2 and Do3 Domains at AUTH
and AXIOS Stations

Regarding the environmental parameter of 10-meter wind speed, the proposed
methodology once again improves the simulation’s performance. In Do2 at AUTH
(Table 5—Do2) the bias index reduced by 77% (changing sign), whereas the corresponding
value from the KF’s implementation decreased by 57% (changing sign). Furthermore,
the RMSE assessor through the modified filter enhanced by 41%, while via the standard
Kalman filter, this improvement was 32%.

Even greater is the enhancement offered by the suggested approach in Do3 at AUTH
(Table 5—Do3). More specifically, the bias was almost eliminated (from −4.9319 to −0.3595)
as the average reduction surpassed 90%, and the RMSE index showed a substantial im-
provement close to 52%. Similar results can be extracted by using the Kalman filter. More
thoroughly, the bias and RMSE indices decreased by 77% and 44%, respectively.

Focusing on the time series diagrams (Figures 8 and 9), it is observed that both
strategies boost the forecasting capabilities of the numerical model for the 10-meter wind
speed parameter, as also revealed by the analysis of the evaluation indicators; nevertheless,
the predictions produced by the suggested filter are once again superior to those obtained
from the traditional methodology.
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The proposed filter based on Radial Basis Function neural networks is the suitable
choice for the AXIOS station. According to the derived results (Table 6—Do2), the standard
KF fails to boost the forecasting capacity of the NWP model since each evaluation indicator
has worsened. The bias and the RMSE assessors increased by 19% and 40%, respectively,
while the Ns indicator demonstrated the highest increase. On the other hand, the cor-
responding values through the modified Kalman filter were reduced by 88%, 36%, and
70%, respectively.

Moving on to the Do3 forecasts at AXIOS, the proposed methodology is still the
superior option as it successfully improves the predictions of the WRF model. Here, the
bias, the RMSE, and the Ns indices were reduced from −1.1446 to −0.0856 (dropped by
93%), from 1.4911 to 1.0898 (dropped by 27%), and from −2.1064 to −0.2628 (dropped by
87%), respectively (Table 6—Do3). On the contrary, the Kalman filter was once again unable
to improve every evaluation indicator as the RMSE assessor deteriorated by 90%.

These conclusions can also be obtained from the time series graphs (Figures 10 and 11).
In every case, the modified Kalman filter based on RBF NNs generates more qualitative
forecasts that lead to an adequate convergence of the modeled PDFs to the recorded
observations. As a result, the integration of Radial Basis Function neural networks into
Kalman’s process improves significantly the forecasts of the NWP model.

7. Discussion
The obtained results emphasize the limitations of traditional Kalman filters and their

non-linear extensions in mitigating systematic and non-systematic forecast errors within
complex and dynamic systems like weather prediction. While conventional Kalman filters
excel in reducing biases by integrating observations with model forecasts, their reliance on
fixed covariance matrices hinders their adaptability to fluctuating forecast uncertainties,
often leading to unstable predictions. In contrast, the proposed modified Kalman filter,
incorporating RBF topologies, provides a substantial enhancement in forecast accuracy.

Furthermore, the proposed modified Kalman filter successfully reduces forecast un-
certainty as the RMSE indicator decreases significantly. The observed reduction in Root
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Mean Square Error across multiple meteorological stations highlights further the improved
stability and precision of the modified strategy. A lower RMSE signifies that the suggested
filtering approach effectively minimizes deviations between predictions and observations,
enhancing both short-term responsiveness and long-term trend accuracy.

Another critical aspect that warrants discussion is the occurrence of negative values
in the Nash–Sutcliffe efficiency coefficient. The non-linear variation of the Kalman filter,
constrained by fixed covariance matrices, produced highly negative Ns values, indicating
that it failed to sufficiently reduce forecast errors and, in some cases, even worsened
the predictions. Negative Ns values typically arise when a predictive model introduces
additional errors rather than mitigating them, resulting in worse performance than simply
using the mean of the observed data.

Several factors can contribute to this outcome, including incorrect assumptions about
the statistical properties of the errors, suboptimal tuning of the covariance matrices, and
an inability to account for dynamically evolving uncertainties in the forecast. Specifically,
utilized fixed covariance matrices in the standard Kalman filter can lead to an inaccurate
representation of the error structure, preventing the filter from properly weighting new
observations and adjusting predictions accordingly; on the contrary, the adaptive nature of
the modified Kalman filter enables a more accurate representation of both systematic and
non-systematic forecast errors, leading to enhanced stability and accuracy.

Improvements in wind speed and air temperature predictions using the adaptive
approach stem from the dynamic updating of covariance matrices through RBF neural
networks. For wind speed, the modified Kalman filter accounts for the effects of localized
and transient meteorological phenomena, such as boundary layer processes and rapid
atmospheric fluctuations, which are difficult to model accurately. For air temperature,
the adaptive process reduces errors from unresolved small-scale processes like land–sea
interactions, urban heat effects, and abrupt topographical variations. This self-adaptive
mechanism ensures more accurate representation of evolving forecast uncertainties, lead-
ing to significant reductions in both bias and RMSE compared to traditional Kalman
filtering methods.

Overall, these findings demonstrate the ability of the proposed methodology to simul-
taneously address both types of errors, ultimately enhancing prediction stability, reliability,
and robustness in handling forecast uncertainty in numerical weather prediction models.
Future research could extend this study by incorporating direct benchmarking with state-of-
the-art methods and performing ablation studies to quantify the individual contribution of
each methodological component, further solidifying the effectiveness and generalizability
of the approach.

8. Conclusions
This study introduces a modified Kalman filter algorithm, innovatively integrating Ra-

dial Basis Function neural networks to enhance the predictive performance of the Weather
Research and Forecasting model for 10-meter wind speed and 2-meter air temperature
forecasts. The proposed approach addresses the critical limitations of standard Kalman
filters, particularly their dependence on fixed covariance matrices, which struggle to adapt
to the dynamic nature of environmental systems.

The novelty of the proposed method lies in three key aspects: (i) the use of a non-linear
Kalman filter with a quadratic polynomial bias correction to effectively capture systematic
forecast errors; (ii) the adaptive estimation of covariance matrices, allowing them to evolve
constantly based on real-time forecast uncertainty; and (iii) the integration of RBF NNs to
model this evolution in a non-linear, data-driven manner, replacing traditional heuristic
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adaptation rules. This third component targets the remaining non-systematic part of the
forecast error.

The suggested modified filter was assessed through a time-window process involving
various stations located in the Thessaloniki region. The extracted results were compared to
those obtained by the same non-linear Kalman filter but with stable covariance matrices
and revealed the following:

• The recorded standard errors decreased significantly: The bias index for the 2-meter air
temperature reduced by 58%, while the corresponding reduction for the 10-meter wind
speed was 88%. In contrast, the values from the non-linear Kalman implementation for
the 2-meter air temperature increased by 31%, whereas for the 10-meter wind speed, it
decreased by 36%;

• The error variability was successfully restrained: The RMSE assessor reduced by 40%
for the 2-meter air temperature and 39% for the 10-meter wind speed. On the other
hand, the corresponding values from using the non-linear KF were intensified by 50%
and 13%, respectively.

Through the above analysis, it is clear that the suggested methodology manages
to boost the forecasting capabilities of the numerical weather model WRF regardless of
the observation station or the environmental parameter, providing a reliable and stable
prediction tool that avoids the limitations of standard Kalman filters.

The authors believe that the proposed modified Kalman filter constitutes a compre-
hensive computational system for environmental applications. While it has been applied
to wind speed and air temperature forecasts, its adaptability offers expansion to other
atmospheric parameters derived from the Weather Research and Forecasting model, such
as mean sea-level pressure, relative humidity, and specific humidity. Future research could
further assess the method’s effectiveness in these contexts, examining its ability to reduce
systematic biases and mitigate uncertainties associated with cloud microphysics and tur-
bulent interactions in numerical weather prediction models. In this regard, a comparative
analysis with other techniques, such as Transformer-based models and Graph Neural
Networks, will be conducted to evaluate its relative strengths and limitations.
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Appendix A. Time-Window Process—Results from AUTH and AXIOS
Stations—Do2 and Do3—Temperature

Table A1. Evaluation indicators for the time-window process. AUTH station–Do2.

Do2–AUTH Time Window 1
Bias RMSE Ns

Model −2.8967 3.1822 −0.6260
Kalman 5.9146 6.1970 −5.1661

Modified Kalman 1.7076 2.3672 0.1002

Do2–AUTH Time Window 2
Bias RMSE Ns

Model −2.8572 3.1474 −0.6865
Kalman 0.4873 1.4922 0.6209

Modified Kalman 0.2972 1.3381 0.6952

Do2–AUTH Time Window 3
Bias RMSE Ns

Model −3.0722 3.2473 −4.3121
Kalman −3.0130 3.1826 −4.1026

Modified Kalman 0.0450 1.0478 0.4469

Table A2. Evaluation indicators for the time-window process. AXIOS station–Do2 and Do3.

Do2–AXIOS Time Window 1 Do3–AXIOS Time Window 1
Bias RMSE Ns Bias RMSE Ns

Model −3.9761 4.4915 −2.4151 Model −4.7617 5.3160 −3.3805
Kalman 9.8326 10.0761 −16.1872 Kalman 3.6442 4.3173 −1.8892

Modified
Kalman 2.9382 3.8391 −1.4951 Modified

Kalman 2.8887 3.9502 −1.4187

Do2–AXIOS Time Window 2 Do3–AXIOS Time Window 2
Bias RMSE Ns Bias RMSE Ns

Model −3.5156 3.6059 −2.0476 Model −4.4522 4.8881 −5.1725
Kalman 8.4526 8.4949 −15.9140 Kalman 5.3557 5.7236 −7.4628

Modified
Kalman 2.1363 2.2780 −0.2164 Modified

Kalman 0.8675 2.1857 −0.2342

Do3–AXIOS Time Window 3
Bias RMSE Ns

Model −4.1878 4.4675 −8.8738
Kalman 5.6460 5.8563 −15.9664

Modified
Kalman 1.1359 1.9383 −0.8587

Appendix B. Time-Window Process—Results from AUTH and AXIOS
Stations—Do2 and Do3—Wind Speed

Table A3. Evaluation indicators of the time-window process. AUTH station–Do2 and Do3.

Do2–AUTH Time Window 1 Do3–AUTH Time Window 1
Bias RMSE Ns Bias RMSE Ns

Model −1.6000 2.2766 −18.4533 Model −4.9950 6.3834 −9.1758
Kalman 0.7350 1.6547 −9.2762 Kalman −1.6060 3.7548 −2.5208

Modified
Kalman 0.3880 1.4266 −6.6382 Modified

Kalman −0.1498 2.9985 −1.2452

Do2–AUTH Time Window 2 Do3–AUTH Time Window 2
Bias RMSE Ns Bias RMSE Ns

Model −1.7133 2.4190 −20.9448 Model −4.9700 6.3737 −9.6456
Kalman 0.7323 1.6537 −9.2552 Kalman −1.3590 3.6504 −2.4919

Modified
Kalman 0.3934 1.4471 −6.8527 Modified

Kalman −0.5439 3.0889 −1.5003
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Table A3. Cont.

Do2–AUTH Time Window 3 Do3–AUTH Time Window 3
Bias RMSE Ns Bias RMSE Ns

Model −1.8244 2.5812 −31.4088 Model −4.8306 6.3336 −9.5930
Kalman 0.7512 1.6535 −12.2994 Kalman −0.4990 3.3681 −1.9956

Modified
Kalman 0.3761 1.4526 −9.2638 Modified

Kalman −0.3849 3.1216 −1.5732

Table A4. Evaluation indicators of the time-window process. AUTH station–Do2 and Do3.

Do2–AXIOS Time Window 1 Do3–AXIOS Time Window 1
Bias RMSE Ns Bias RMSE Ns

Model −0.9283 1.6538 −4.8686 Model −1.1972 1.5045 −2.1293
Kalman 0.7528 1.4332 −3.4070 Kalman −0.9428 2.8035 −0.2550

Modified
Kalman −0.0061 1.1874 −2.0252 Modified

Kalman −0.7037 1.1510 −0.3316

Do2–AXIOS Time Window 2 Do3–AXIOS Time Window 2
Bias RMSE Ns Bias RMSE Ns

Model −1.0411 1.6398 −5.2674 Model −1.1544 1.5126 −1.8966
Kalman −1.5269 2.1462 −9.7362 Kalman −0.7606 2.8392 −0.3155

Modified
Kalman −0.0853 1.0678 −1.6577 Modified

Kalman 0.1773 1.0699 −0.2492

Do2–AXIOS Time Window 3 Do3–AXIOS Time Window 3
Bias RMSE Ns Bias RMSE Ns

Model −1.2606 1.6216 −5.9406 Model −1.0822 1.4562 −2.2932
Kalman −3.0808 3.3043 −27.8161 Kalman −0.6646 2.8255 −0.3770

Modified
Kalman −0.2881 0.9131 −1.2004 Modified

Kalman 0.2697 1.0485 −0.2075

Appendix C. Time-Window Process—Matlab Code—General
Instructions
% The indication Value depends on the user and the application. Is not the same

for every variable.
% The variable WH presents the recorded observations, while SWH the forecasts

from the simulation model
format long e

load('')% Load the available data
% Initial parameters for the Time Window Process.

timewindow= Value;
BiasModel=zeros(1,timewindow+1);nsModel=BiasModel;RmseModel=BiasModel;

BiasRBFNN=BiasModel;RmseRBFNN=BiasModel;nsRBFNN=BiasModel;
% Training and Testing data sets

Training data=Value; Testing data =Value;
FORECASTS=zeros(Testing data,timewindow+1);

TrueObs=FORECASTS; ModelsObs=FORECASTS; Est=zeros(1,Training data);
% Training Parameters for the LM

maxtrain=Value;minNumberOfNeurons=Value;maxNumberOfNeurons=Value;
Aa=minNumberOfNeurons:maxNumberOfNeurons; rr=1;error=Value;ww=1;www=1;

bestNeuron=zeros(1,timewindow+1);
% Find the best topology

trainMSE1=zeros(1,size(minNofN:maxNofN,2));
TotalMSE=zeros(timewindow+1,size(minNofN:maxNofN,2));

% Initial parameters for the Kalman Filter
dimState=Value;dimMes=Value;

F=Value;I=eye(dimState); % Here Value=1
P=Value*eye(dimState,dimState); % Here Value=4
ybest=zeros(dimState,size(minNofN:maxNofN,2));

%Time Window Process
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for tttt=0:timewindow
histdataa=tttt+1:histdata+tttt;

N=size(data(histdataa),1);
%systematic error of the simulation
obs=WH(histdataa)'-SWH(histdataa)';

% Initial values for the covariance matrices
R=4;Q=eye(dimState,dimState);

y=zeros(dimState,N);
par=SWH(histdataa)';ESTer=zeros(dimMes,N);

for ii=minNofN:maxNofN
l=ii; % Number of neurons

while rr<=maxtrain
y(:,1)=rand(dimState,1);

% Kalman filter algorithm. Quadratic variation
for k=2:N

H=[1 par(:,k-1) par(:,k-1).ˆ2];
% estimate state
y(:,k)=F*y(:,k-1);
% error covariance

P=F*P*F'+Q;
%Innovation Covariance

S=H*P*H'+R;
%Kalman gain
K=P*H'/S;

%Innovation
d=obs(:,k)-H*y(:,k);

% Update the state vector
y(:,k)=y(:,k)+K*(obs(:,k)-H*y(:,k));

%Update the R
yy=(obs(:,k)-y(:,k))'*(obs(:,k)-y(:,k));% residual

y1=R;y2=H*P*H';Inputt=[yy;y2];
[MIN,~,~]=Levenberg-Marquardt(Inputt,l);

Rnew=abs(y1+MIN);R=Rnew;
% New Kalman Gain
K=P*H'/(H*P*H'+R);

%Update the error covariance
P=(I-K*H)*P;
%Update the Q
Inputtt=[d;K];

MIN1=Levenberg-Marquardt(Inputtt,l);
Q=abs(Q+MIN1*eye(dimState,dimState));

%Update the state
y(:,k)=y(:,k)+K*(obs(:,k)-H*y(:,k));

end
% Corrected data from modified Kalman filter.

for i=2:N
Est(:,i)=[1 par(:,i-1) par(:,i-1).ˆ2]*y(:,end);

end
z1=SWH(histdataa)'+Est;

%Calculate the training MSE
trainMSE=mean((WH(histdataa)-z1').ˆ2);

if trainMSE<=error
error=trainMSE;

ybest(:,ww)=y(:,N);
trainMSE1(1,ww)=error;

end
rr=rr+1;

end
error=10ˆ10;ww=ww+1;rr=1;

end
%Find the abs(error)

ff1=find(trainMSE1==min(trainMSE1));
if size(ff1,2)==1

ff=ff1;
end
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y(:,N)=ybest(:,ff);bestNeuron(1,www)=Aa(ff);
WW=WH(histdataa(end)+1:histdataa(end)+Testing data);nn=size(WW,1);

par=SWH(histdataa(end)+1:histdataa(end)+Testing data)';
par2=SWH(histdataa(end):histdataa(end)+Testing data-1)';

ESTer1=zeros(1,nn);z2=zeros(1,nn);
for ww=1:nn

H=[1 par2(:,ww) par2(:,ww).ˆ2];
ESTer1(:,ww)=H*y(:,N);

z2(:,ww)=par(:,ww)+ESTer1(:,ww);
end

% Evaluation of the method
t=1:nn;

BiasModel(1,tttt+1)=sum(WW(t)-par(t)')/size(t,2);
RmseModel(1,tttt+1)=sqrt(mean((WW(t)-par(t)').ˆ2));
BiasRBFNN(1,tttt+1)=sum(WW(t)-z2(t)')/size(t,2);

RmseRBFNN(1,tttt+1)=sqrt(mean((WW(t)-z2(t)').ˆ2));
av=sum(WW(t))/size(t,2);

nsModel(1,tttt+1)=1-(sum((WW(t)-par(t)').ˆ2)/sum((WW(t)-av).ˆ2));
nsRBFNN(1,tttt+1)=1-(sum((WW(t)-z2(t)').ˆ2)/sum((WW(t)'-av).ˆ2));

TrueObs(:,tttt+1)=WW(t);ModelsObs(:,tttt+1)=par(t);
FORECASTS(:,tttt+1)=z2(t)';TotalMSE(tttt+1,:)=trainMSE1;

www=www+1;
end

% Store the results
tt=1;qq=1;TimeSeries=zeros((timewindow+1)*forecast,3);

for tttt=0:timewindow
TimeSeries(qq:tt*forecast,1:3)=[TrueObs(:,tttt+1) ModelsObs(:,tttt+1)

FORECASTS(:,tttt+1)];
qq=tt*forecast+1;

tt=tt+1;
end

EvalInd=[BiasModel;RmseModel;nsModel;BiasRBFNN;RmseRBFNN;nsRBFNN]';
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