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ABSTRACT 
Background: Fibroblast growth factor 21 (FGF21 regulates several biochemical pathways such as glucose/fructose 
update, lipid oxidation, and insulin/glycogen sensitivity. Some beneficial effects of FGF21 on human body have been 
investigated, including weight loss and improved glycemia. It has been also suggested as a therapeutic agent for 
Diabetes Type 2. Aim: Τhe aim of this study is to measure FGF21 serum levels in diabetes mellitus patients, compare 
them with FGF21 levels in healthy individuals and correlate them with age, carbohydrate and lipid metabolism 
markers. Methodology: In this study. FGF21 levels in 35 diabetics and 23 non-diabetics were correlated with Glucose, 
HBA1c, Cholesterol, Triglycerides, HDL-cholesterol, LDL-cholesterol concentrations. Results: FGF21 concentration 
is doubled in diabetics. (both men and women). independently from the patients’ age. and it was statistically significant. 
No statistical correlation between FGF21 and other biochemical markers in diabetic and non-diabetic individuals. as 
well as within the two subgroups of participants aged <40 years old. and > 40 years old was recorded. Conclusion: 
FGF21 is an important metabolic regulator, which its concentration was found increased in diabetics serum, in the 
present study, while no statistical correlation was found between FGF21, age of the participants and other biochemical 
markers. 
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1. INTRODUCTION 
 
Fibroblast growth factor 21 (FGF21) is a hormone 
that regulates important metabolic pathways. It is 
expressed in various metabolically active organs 
and interacts with different tissues. Its function is 
complex and well. Muscles [1] and liver [2] are 
important sources of FGF21. FGF21 belongs to 
the superfamily of proteins “FGFs” first discov-
ered in 1976 [3-6]. In the human body, FGF21 
gene is expressed in liver, muscles, pancreas [7] 
and in fat adipocytes [8]. The endocrine subfam-
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ily of FGFs (FGF19, FGF21, FGF23) affects the 
whole-body physiology [9-11], including potent 
effects on obesity, glucose update and lipids, in-
sulin sensitivity, and energy expenditure. The 
way FGF21 stimulates glucose uptake in mice 
and humans has been discovered: FGF21 con-
nects with its receptor on cell membrane which is 
a complex of the transmembrane co-receptor 
Klotho-β (KLB) and tyrosine kinase receptor 
FGFR1c [12]. This connection regulates the ex-
pression of Glucose Transporter 1 that promotes 
glucose uptake into 3T3-L1 cells and primary ad-
ipocytes of human body. In mice with dietary obe-
sity, FGF21 may reverse hepatic steatosis and 
increase hepatic insulin sensitivity by suppress-
ing glucose production in the liver and increasing 
hepatic glycogen content, thus improving sys-
temic intolerance to glycine intolerance [13-14]. 
FGF21 also decreased the concentration of low-
density lipoprotein cholesterol (LDL-C) and in-
creased the concentration of high-density lipo-
protein cholesterol (HDL-C) [15]. These findings 
suggest that FGF21 has an important role in reg-
ulating metabolism in rodents and primary obese 
mammals. 

In humans, FGF21 levels appear to be unre-
lated to Body Mass Index (BMI), age, blood glu-
cose, total, LDL or HDL cholesterol, triglycerides, 
total body cholesterol synthesis or bile acid syn-
thesis. Treatment of primary hypertriglyceridemia 
with fenofibrates reduced serum triglycerides ef-
fectively and increased serum FGF21 levels. How-
ever, a 25,5-hour fast and ketogenic diet did not 
affect FGF21 levels. FGF21 levels increased after 
7 days fast [16]. In 2009, Potthoff at al. using trans-
genic mice overexpressing FGF21 mainly in the 
liver, found that FGF21 caused a metabolic state 
of fasting, which included increased production of 
PGC1α, a key regulator of energy homeostasis. 
The inductive effects of FGF21 on glucose-6-
phosphatase and phosphoenolpyruvate carbox-
ykinase are substantially eliminated in mice with 
inactivated PGC1α. On the contrary, mice without 
FGF21 have reduced gluconeogenesis. These 
findings prove that FGF21 is involved in the reg-
ulation of gluconeogenesis through PGC1α [17]. 
In contrast to the above findings, another study 
showed that FGF21 acts directly on the liver, 
stimulating the expression of gluconeogenic 
genes [18]. This study showed that FGF21 can 
induce to gluconeogenic gene expression in wild-
type mice as in mice with specific hepatic degra-
dation of PGC1α thus precluding PGC1α involve-
ment in FGF21-induced glycogen. The induction 
of hepatic fatty acid oxidation by PPARα is in-
duced by FGF21. PPARα is the major regulator 
of fatty acid oxidation. causing the expression of 

a set of key genes involved in this process. RNA-
mediated suppression of FGF21 expression 
causes impaired fatty acid oxidation and severe 
liver steatosis, whereas chronic treatment with 
com-bined FGF21 reverses fatty liver in obese 
mice [19]. A study found that sodium butyrate, a 
compound with protective effects against diet-
induced obesity and dyslipidemia, increased he-
patic expression and plasma levels of FGF21 in 
mice. It is noteworthy that the ability of sodium 
butyrate to increase energy consumption and 
fatty acid oxidation does not exist in mice with in-
activated FGF21 [20]. In humans, plasma FGF21 
levels are significantly elevated in patients with 
fatty liver disease and are positively correlated 
with liver’s fat percentage and the degree of ste-
atosis [21]. It is currently unclear whether ele-
vated plasma FGF21 levels are due to compen-
satory responses or the presence of resistance to 
FGF21 during fatty acid oxidation. In general, 
FGF21 serum levels increase in the following 
cases [7]: obesity, nonalcoholic fatty liver dis-
ease, lipid infusion, exercise, uptake of fructose, 
insulin and glycogen increased sensitivity in fat 
and pancreas. FGF21 as an autocrine and para-
crine hormone produced by several organs stim-
ulates the following [22] ketogenesis and free 
fatty acids production in liver, glucose control in-
creasing insulin sensitivity and energy expendi-
ture in fat tissues, glucose uptake in muscle and 
heart, decrease of glucagon and inflammation bi-
omarkers in pancreas, bone resorption, food in-
take in brain. 

Diabetes mellitus is a chronic condition char-
acterized by a disturbance in the metabolism of 
carbohydrates, fats and proteins. The main and 
common disorder in all forms of diabetes is 
hyperglycemia. Type II diabetes is due to a 
combination of impaired insulin secretion and 
action (tissue resistance to insulin) [23]. More 
than 350 million people suffer from diabetes 
worldwide today, while it is worth noting that 
almost half of them, are undiagnosed. Type 2 
diabetes mainly influences older people, usually 
obese [24]. The target organs affected by 
diabetes mellitus are the eyes, kidneys, nervous 
system and vessels of the heart, brain and 
peripheral arteries. Oxidative stress causes the 
loss of function and structure of healthy cells, 
DNA and other important macromolecules. 
These effects are blamed for causing chronic 
diseases such as stroke, cardiovascular damage 
and diabetes [25-26]. In this paper we have 
measured FGF21 serum levels in diabetes 
mellitus patients and correlated them with their 
age and with carbohydrate and lipid metabolism 
markers. 
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2. METHODOLOGY 
 

2.1. Purpose of the study 
 

Our main aim was to determined compare FGF-21 
levels among patients with diabetes type 2 (T2DM) 
and non-diabetics (healthy individuals), T2DM was 
characterized by high glucose and HBA1c levels. 
FGF-21 levels were then correlated with carbohy-
drate and lipid metabolites. 

The time period of the study is from 12/2021 to 
3/2022 and was conducted in a private laboratory. 
The study protocol was approved by the ethics 
committee of the University of West Attica (proto-
col number 97331/04-11-2021). Patients for their 
participation in the research program were given a 
consent form, in which information was provided 
and their acceptance was signed. The inclusion 
and exclusion criteria from this study were their ex-
amination by a private pathologist and the results 
of their biochemical tests. “Non-diabetics” were 
healthy individuals or volunteers, who did not suf-
fer from diseases. The two groups are not age- 
matched, due to an inability to find age-matched 
healthy and diabetic populations. We consider the 
age gap to be a clear limitation of our study. 
 

2.2. Material and Methods 
 

We collected randomly 58 venous blood speci-
mens from 35 diabetics and 23 non-diabetics. 
Thirty of them were women (21 - 96 years old) and 
twenty-eight were men (18 - 83 years old). Whole 
EDTA blood samples were used for the determi-
nation of HbA1c with turbidity method and the de-
rived plasma samples were used for the determi-
nation of Chol, HDL, LDL, TG and Glucose by a 
colorimetric assay Kit. 
 

2.2.1 Biochemical analyses 
 

Whole EDTA blood samples for the determination 
of HbA1c with turbidity method and the derived 
plasma samples for the determination of 
Glucose, Cholesterol, Triglycerides, HDL, LDL, 
FGF21. 

Glucose determination 

In the glucose oxidase assay, the glucose is first 
oxidized, catalyzed by glucose oxidase, to pro-
duce gluconate and hydrogen peroxide. The hy-
drogen peroxide is then oxidatively coupled with 
a chromogen to produce a colored compound 
which may be measured spectroscopically.  

HbA1c determination 

HbA1c is measured in whole blood by turbidime-
try. This method directly determinates HbA1c us-

ing an antigen and antibody reaction. Total he-
moglobin and HbA1c compete for the unspecific 
absorption rate to the latex particles. When anti-
human HbA1c monoclonal antibody is added, 
latexHbA1c-anti-human HbA1c antibody complex 
is formed. The presence of goat anti-mouse IgG 
polyclonal antibody causes the agglutination of 
the particles(complexes). The amount of aggluti-
nation is proportional to the concentration of the 
HbA1c in the sample. 

Cholesterol determination 

Cholesterol (Chol) is measured enzymatically. With 
the influence of the enzyme cholesterol esterase 
(CE), Cholesterol esters are hydrolyzed to Chol and 
total Chol. Then, with the influence of the enzyme 
Cholesterol oxidase is oxidized to produce H2O2.The 
reaction of H2O2 with phenolic derivative and 4-ami-
nophenazone is catalyzed by the enzyme perox-
idase and produces a red colored product. The 
increase in absorbance to 510 nm is proportional to 
cholesterol concentration in the sample. 

Triglycerides determination 
Triglycerides are enzymatically hydrolyzed by li-
pase to free fat acids and glycerol. Glycerol is 
phosphorylated by adenosine triphosphate (ATP) 
with glycerol kinase (GK) for the formation of glyc-
erol 3-phosphate and adenosine diphosphate. 
Glycerol 3-phosphate is oxidized by phosphate ox-
idase glycerol forming dihydroxyacetone phos-
phate (DAP) and peroxide of hydrogen (H2O2). 
The reaction of H2O2 with phenolic derivative and 
4-aminophenazone is catalyzed by the enzyme 
peroxidase and produces a red colored product. 
The increase in absorbance to 510 nm is propor-
tional to cholesterol concentration in the sample. 

Direct method for HDL determination 

During the first phase, Low Density Lipoproteins 
(LDL), Very Low-Density Lipoproteins (VLDL), and 
chylomicron particles release free cholesterol 
which undergoes an enzymatic reaction, produc-
ing hydrogen peroxide. which is degraded by the 
reaction with Peroxidase (POD) and N. N-bis 
(sulphobutyl)-m-toluldine-disodium (DSSmT). No 
coloured derivatives are formed. During the sec-
ond phase, a specific detergent solubilizes the 
HDL cholesterol, Under the combined action of 
Cholesterol Oxidase (CO) and Cholesterol Ester-
ase (CE), the POD. 4-Aminoantipyrine (4- AAP) 
couple develops a colored reaction proportional to 
the HDL cholesterol concentration. The reading is 
taken at 600 nm. Siemens Dimension ExL ana-
lyzer was used for the above measurements. 

 
LDL was estimated by Friedewald equation: 

LDL = Chol – HDL – TG/5). 
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FGF21 determination 

FGF21 was measured with the quantitative sand-
wich enzyme immunoassay kit (Biotech R&D sys-
tems). A monoclonal antibody specific for human 
FGF-21 has been pre-coated on to a micro plate. 
Standards and samples are pipette into the wells 
and any FGF-21 present is bound by the immobi-
lized antibody. After washing away any unbound 
substances. an enzyme linked polyclonal antibody 
specific for human FGF-21 is added to the wells. 
Following a wash to remove any unbound anti-
body-enzyme reagent, a substrate solution is 
added to the wells and color develops in proportion 
to the amount of FGF-21 bound in the initial step. 
The color development is stopped and the inten-
sity of the color is measured. 
 

2.2.2. Statistical analysis 
 

Statistical analysis was done with the statistical 
package SPSS v.29 (Academic license). Before any 
statistical comparisons, the normality of all variables 
with Shapiro-Wilk test was checked. Since the vari-

ables were not normal, hence we used no paramet-
ric statistical tests. The correlation of each of the pa-
rameters with FGF21 by using Spearman test were 
firstly examined. The medians of FGF21 between 
diabetics and no-diabetics per gender with Mann 
Whitney test were then checked. 
 

3. RESULTS 
 

Table 1, describes FGF21, carbohydrates and li-
pids measurements of the 58 participants, for men 
and women diabetics and non-diabetics. Before 
any statistical comparisons, the normality of all 
variables with Shapiro-Wilk test was checked. 
Since the variables were not normal, we used no 
parametric statistical tests. The correlation of each 
of the parameters with FGF21 by using Spearman 
test were firstly examined. No any strong correla-
tions observed among them, since all Spearman 
values were very low (<0.5) with no statistical sig-
nificance (p>0.05). A worth mentioning finding was 
the negative correlation between HBA1c and 
FGF21 (Table 2). 

  
Table 1. FGF21. Carbohydrate and lipid metabolites measurements. 

 
  

  
Age 

(years) 
Glucose 
(moles/L) 

HbA1c 
(%) 

Total 
Cholesterol  
(moles/L) 

Triglycerides 
(moles/L) 

HDL-
Cholesterol 
(moles/L) 

LDL-
Cholest

erol  
(moles/

L) 

FGF21 
(pg/m) 

Diabetics 
males 

Mean 64.1 8.6 7.6 4.4 2.2 1.1 2.5 616.1 

Median 66.0 7.7 7.5 4.4 1.9 1.1 2.3 573.0 

SD 11.8 2.8 1.2 1.0 1.7 0.2 0.9 246.6 

Diabetics 

females 

Mean 64.4 8.7 7.5 4.7 2.1 1.1 2.5 685.1 

Median 61.0 7.7 7.0 4.6 1.9 1.2 2.4 621.5 

SD 15.4 3.2 1.5 1.2 0.8 0.2 1.1 403.1 

Non-
diabetics 

males 

Mean 48.4 5.0 5.2 5.0 1.1 1.3 2.8 285.6 

Median 50.0 5.0 5.0 4.6 1.0 1.3 2.3 284.0 

SD 19.8 0.4 0.3 1.1 0.3 0.2 0.9 7.7 

Non-
diabetics 
females 

Mean 52.7 5.0 5.1 4.8 1.1 1.5 2.7 288.4 

Median 53.5 4.9 5.1 4.8 1.0 1.4 2.4 288.5 

SD 18.3 0.5 0.3 0.9 0.4 0.2 0.7 5.9 

 
The medians of FGF21 between diabetics and 

no-diabetics per gender with Mann Whitney test 
were then checked (Table 3). The values of FGF21 
levels in the two groups were for male diabetics 
616.1 ± 246.6 pg/mL and female diabetics 685.1 ± 
403.1 pg/mL, while for male healthy volunteers 
were 285.6±7.7 pg/mL and female healthy 
volunteers 288.4±5.9 pg/mL. The observed 

differences of medians had remarkable statistical 
significance. The possible relation between the 
FGF21 levels with the ages of the participants 
(Table 4) was finally further examined. Two 
subgroups of participants: a) <40 years old, and 
b) > 40 years old. Mann Whitney test showed 
that the observed differences of medians had 
exhibited no statistical significance.  
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Table 2. Spearman test’s values from the correlations between the studied biochemical parameters and FGF-21. All 
Spearman values are very low and there hadn’t statistically significant (p>0.05). 
 

Diabetics males 
Diabetics 

males 
(N=21) 

Diabetics 
females 
(N=14) 

Non-diabetics 
males (N=7) 

Non-diabetics 
females (N=16) 

Diabetics 
(N=35) 

Non-
diabetics 

(N=23) 

Glucose -0.004 0.206 -0.107 -0.322 0.043 -0.235 

HbA1c -0.231 -0.009 -0.094 -0.478 -0.111 -0.433 

Cholesterol -0.145 0.108 0.643 -0.160 -0.063 0.316 

Triglycerides -0.112 0.562 0.036 -0.621 0.138 -0.405 

HDL-Cholesterol -0.312 -0.095 -0.429 0.451 -0.202 0.189 

LDL-Cholesterol -0.122 0.295 0.559 0.219 -0.212 0.367 

 
Table 3. Comparisons of mean values of FGF-21 between diabetics and non-diabetics per gender. 

 

Medians FGF21 (pg/mL) Mann-Whitney test 

T2DM Controls p-value 

(All) 592.0 (All) 287.0 <0.01 

(Males) 573.0 (Males) 284.0 <0.01 

(Females) 621.5 (Females) 288.5 0.01 

(All*) 565.5 (All*) 287.0 <0.01 

(Males*) 558.0 (Males*) 284.0 <0.01 

(Females*)  531.0 (Females*) 288.5 <0.001 

*Mann-Whitney test without the outliers. 

  
Table 4. Descriptive statistics of FGF-21 between diabetics and non-diabetics per age group (≤40, >40). Outliers have been 
removed. The last line contains the p-value of Mann Whitney test from the comparison of two age groups for diabetics and 
non-diabetics. 
 

 
T2DM Controls 

Age (years old) ≤ 40 > 40 ≤ 40 > 40 

Mean (pg/mL) 365 592 290 285 

Median 365 582 291 285 

Standard deviation 148 220 7.02 6.20 

Minimum 260 243 280 276 

Maximum 470 989 298 295 

Number 2 30 7 16 

p-value Mann Whitney 0.182 0.089 

 
Table 5. The correlation of FGF21, expressed as r Pearson with common biochemical biomarkers of diabetes and metabolic 
syndrome in several studies.  
  

 
Our 

study 
Aleem et al. 

2021 [27] 
Gao et al. 
2019 [28] 

Eto et al. 
2010 [29] 

Li Xuesong et 
al. 2011 [30] 

Li Lang et al. 
2008 [31] 

Glucose 0.043 - 0.187* -0.083 - - 

HbA1c -0.111 - 0.059 0.012 -0.132 0.43* 

Cholesterol -0.063 0.57* 0.163 - 0.069 0.08 

Triglycerides 0.138 0.71* 0.499* 0.317* 0.028* 0.081* 

HDL-Cholesterol -0.202 0.36* -0.219* 0.002 -0.142 0.18* 

LDL-Cholesterol -0.212 0.42* 0.176* 0.173* -0.019 0.001* 

*Statistically significant (p<0.05) 

 

4. DISCUSSION 
 
According to our study. FGF21 levels are higher in 
diabetics than in non-diabetics (Table 3). Their dif-
ferences are statistically significant. Our finding is 
compatible to other studies [27-31]. No strong cor-
relation between FGF21 and the other metabolic 
parameters of diabetes and metabolic syndrome 
was detected (Table 5). FGF21 has a protective role 
in T2D and its large increase have been proved 
 

 

in many studies like our study (Table 5). It is known 
FGF21 inhibits lipid deposition in liver [21] and 
protects against diabetic cardiomyopathy and 
diabetic nephropathy [32]. Despite FGF21 regulation 
of lipid metabolism the correlation between FGF21 
levels and lipid biomarkers in serum is very low 
without steady trend (positive/negative correlation) 
and no always statistically significant (Table 5). 

In our study, we examined also the relation of 
FGF21 levels with the age of the participants (T2DM 
and Controls) (Table 4). We didn’t find any difference 
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between our two age groups (≤40, >40 years old) in 
control subjects but FGF21 levels were 60% higher 
in elderly T2DM patients (p<0.05). Other similar 
studies proved the same. For instance. at the study 
of Villaroya et al. serum levels of FGF21 were 
significantly increased in elderly (>70 years old) 
compared with youngest people (≤40) suffered from 
diabetes [33]. With this study, further progress will 
be made in the study of diabetes mellitus, since, 
maybe, by measuring a specific biochemical index 
it may be possible to predict the occurrence or not 
of diabetes mellitus, A future research could be to 
measure FGF21 serum levels in patients with type 
1 diabetes mellitus and the predisposition of 
patients to develop diabetes. 

 

5. CONCLUSION 
 

As a general conclusion FGF21 is an important 
metabolic regulator. extensively expressed in ani-
mals and humans in many organs but its relevance 
to metabolic disorders in human is poorly charac-
terized. In this study, its concentration was found 
increased in diabetics serum, while no statistical 
correlation was found between FGF21, age of the 
participants and other biochemical markers. 
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