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Abstract: This systematic literature review (SLR) provides a comprehensive application-
wise analysis of machine learning (ML)-driven predictive maintenance (PdM) across in-
dustrial domains. Motivated by the digital transformation of industry 4.0, this study ex-
plores how ML techniques optimize maintenance by predicting faults, estimating remain-
ing useful life (RUL), and reducing operational downtime. Sixty peer-reviewed articles 
published between 2020 and 2024 were selected using the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) 2020 guidelines, and were analyzed 
based on industrial sector, ML techniques, datasets, evaluation metrics, and implementa-
tion challenges. Results show that combining ML with diverse sensor data enhances pre-
dictive performance under varying operational conditions across manufacturing, energy, 
healthcare, and transportation. Frequently used open datasets include the commercial 
modular aero-propulsion system simulation (CMAPSS), the malfunctioning industrial 
machine investigation and inspection (MIMII), and the semiconductor manufacturing 
process (SECOM) datasets, though data heterogeneity and imbalance remain major barri-
ers. Emerging paradigms such as hybrid modeling, digital twins, and physics-informed 
learning show promise but face issues like computational cost, interpretability, and lim-
ited scalability. The findings highlight future research needs in model generalizability, 
real-world validation, and explainable artificial intelligence (AI) to bridge gaps between 
ML innovations and industrial practice. 

Keywords: machine learning; predictive maintenance; digital twins; Internet of Things; 
Industry 4.0; fault diagnosis; hybrid modeling 
 

1. Introduction 
PdM has become an essential strategy in modern industrial settings, driven by the 

rapid expansion of Industry 4.0 technologies. By leveraging ML techniques, PdM aims to 
transition from reactive to proactive maintenance strategies, reducing unexpected fail-
ures, minimizing costs, and improving overall operational efficiency. Traditional mainte-
nance approaches, such as run-to-failure and preventive maintenance, rely on either re-
acting to breakdowns or performing maintenance at fixed intervals. In contrast, PdM uses 
real-time data analysis and ML-based predictive modeling to optimize maintenance 
schedules and extend equipment lifespan [1,2]. 
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This evolution is largely driven by AI, encompassing ML and its advanced subset, 
deep learning (DL). ML algorithms learn from data to make predictions or decisions with-
out explicit programming, while DL employs multi-layered neural networks to extract 
features from raw unstructured data. ML techniques are typically categorized into super-
vised and unsupervised learning [3]. As illustrated in Figure 1, supervised learning, in-
cluding support vector machines (SVMs), decision trees (DTs), and artificial neural net-
works (ANNs), has shown strong results in fault classification and RUL estimation, 
though it depends on high-quality labeled data, which is often costly or impractical in 
industrial settings. To address this, unsupervised methods, such as clustering algorithms 
and autoencoders, are increasingly applied in scenarios like anomaly detection where fail-
ure labels may be unreliable or unavailable. DL architectures like convolutional neural 
networks (CNNs) and long short-term memory (LSTM) networks have gained promi-
nence for their effectiveness in handling time-series sensor data [4]. 

 

Figure 1. Conceptual hierarchy of AI, ML, and DL methods. 

Recent studies affirm the growing effectiveness of AI in real-world PdM applications. 
Sensor-based monitoring, especially through vibration analysis, has become indispensa-
ble across industries. Techniques like ensemble learning, hybrid modeling, and transfer 
learning are also being explored to enhance generalizability and robustness across diverse 
operational conditions. However persistent challenges including data scarcity, labeling 
costs, and a lack of standardized benchmark datasets, continue to limit comparability and 
hinder large-scale adoption [5]. 

The integration of digital twin technology has further advanced predictive capabili-
ties, enabling real-time synchronization between physical assets and their virtual counter-
parts. This supports dynamic simulations, fault diagnosis, and predictive modeling. By 
combining physics-based models with ML-driven analytics, these systems aim to improve 
prediction accuracy and reliability. Nonetheless, challenges like data heterogeneity, 
cloud-edge collaboration, and the computational demands of high-fidelity models remain 
barriers to adoption [6]. 

Data-driven maintenance strategies have been adopted across various industries, 
such as manufacturing, automotive, power electronics, and energy. In manufacturing, a 
major focus lies in the condition monitoring of rotating machinery, particularly bearings 
in grinding machines, which require continuous oversight to prevent catastrophic fail-
ures. DL-based methods, including CNNs and transfer learning, have demonstrated ef-
fectiveness in identifying fault patterns and predicting failures. Although traditional 
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approaches have also been used, their reliance on manually extracted features often limits 
performance. Integrating ML with real-time sensor data has markedly improved fault 
classification and RUL estimation, although noise interference and limited data availabil-
ity remain practical obstacles [7]. 

In the automotive sector, PdM has been extensively applied to critical components 
such as engines, batteries, and suspension systems. While supervised learning models 
have proven effective in fault identification, their dependence on labeled data is a limita-
tion. Unsupervised and semi-supervised approaches are gaining traction, especially for 
anomaly detection in real-time vehicle monitoring. Incorporating multi-source data from 
onboard diagnostics, sensors, and fleet histories poses additional challenges. Concerns 
surrounding data privacy, computational efficiency, and DL model interpretability must 
also be addressed for broader implementation [8]. 

Power converters, which are essential for electric mobility, renewable energy, and 
smart grids, have also been a major focus of research. Approaches have evolved from 
physics-of-failure-based models to data-driven techniques like DL and probabilistic mod-
els. While model-based methods are often computationally intensive, purely data-driven 
ones may lack physical interpretability. Physics-informed ML is emerging as a promising 
compromise, incorporating domain knowledge into AI models to enhance both reliability 
and generalizability [9]. 

PdM adoption is also increasing in the energy sector, particularly for medium-volt-
age switchgear. Here, advanced sensor technologies such as infrared, vibration, and par-
tial discharge sensors are combined with AI analytics. DL models like LSTMs and CNNs 
have improved fault diagnosis and condition monitoring, although scalability, real-time 
application, and sensor integration remain key hurdles [10]. 

A broader trend in recent research is the pursuit of hybrid models that integrate ML 
with physics-based simulations. In induction motors, for example, CNNs and autoencod-
ers are widely used for fault detection. The next frontier involves combining these with 
multi-agent systems and digital twins. However, ensuring that AI models trained in con-
trolled environments can generalize to dynamic real-world conditions remains a critical 
research challenge [11]. 

Therefore, this review provides a concise application-focused perspective on modern 
data-driven maintenance methods. By examining core algorithms, datasets, and real-
world challenges in multiple industries, it aims to guide the transition from research in-
novation to practical adoption. 

In the remainder of this paper, Section 2 details the review methodology, while Sec-
tion 3 discusses domain-specific applications, key models, datasets, and metrics. Section 
4 addresses recurring limitations such as data complexity and scalability, and Section 5 
summarizes the main conclusions and suggests future research directions. 

2. Materials and Methods 
The PRISMA 2020 guidelines were followed to ensure transparency, rigor, and re-

producibility. The updated framework incorporates methodological advances since 
PRISMA 2009, providing structured guidance for formulating research questions, design-
ing and implementing a search protocol, defining inclusion and exclusion criteria, select-
ing studies, extracting data, and synthesizing findings [12]. 

2.1. Research Questions 

To systematically guide the investigation, the following research questions (RQs) 
have been formulated: 

RQ1: what are the industry applications and latest trends in ML-based PdM? 



Appl. Sci. 2025, 15, 4898 4 of 24 
 

RQ2: which ML algorithms are commonly used for PdM, how do they perform across 
domains, and what evaluation metrics are used to assess their effectiveness? 

RQ3: what datasets are commonly used for benchmarking PdM models? 
RQ4: what challenges, and research gaps exist in implementing ML-based PdM, and 

what are the future directions? 

2.2. Search Strategy 

The literature search was conducted exclusively in Scopus, a multidisciplinary data-
base known for its extensive peer-reviewed research coverage. With advanced tools like 
citation tracking, collaboration mapping, and trend analysis, Scopus enhances study ac-
curacy and depth. Its validated reliability across disciplines makes it a robust choice for 
systematic literature reviews [13,14]. 

The final search was performed on 1 March 2025, with a keyword-based strategy de-
signed to capture relevant studies while excluding the grey literature and unpublished 
works. Initially, the broad query “TITLE-ABS-KEY (predictive AND maintenance AND 
machine AND learning)” retrieved 4501 records. After applying the inclusion criteria, the 
dataset was narrowed down to 223 fully published records. To ensure both quality and 
temporal balance, studies were first sorted by citation count within each publication year, 
and a stratified selection was made by choosing an equal number of highly cited papers 
per year. The subsequent application of exclusion criteria, as outlined in Figure 2, resulted 
in a final selection of 60 articles. The exact search query, including the final set of filters 
and parameters applied, is detailed in Table 1. 

 

Figure 2. Flow diagram of study selection process. 

Table 1. Search query used for retrieving studies from Scopus. 

TITLE (predictive AND maintenance AND machine AND learning) 
AND PUBYEAR > 2019 AND PUBYEAR < 2025  
AND (LIMIT-TO (LANGUAGE, “English”)) 
AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”)) 
AND (LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ar”)) 
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Records identified 
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Records screened 
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𝟐𝟐𝟑
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ed Studies included in 

review
𝟔𝟎

Records removed based on Exclusion Criteria (EC)
EC1: Studies unrelated to research questions or out of scope→ 𝟒𝟒
EC4: Low Impact Factor → 𝟏𝟏𝟏
EC2: Misclassified Reviews → 𝟑
EC3: Surveys → 𝟒

Identification of studies via database

Records removed based on Inclusion Criteria (IC)
IC1: Publication Year Filter (Studies published outside the 2020 − 2024 range) → 𝟖𝟑𝟒
IC2: Title Search Restriction (Records not containing specific search terms in the title) → 𝟑𝟑𝟔𝟏
IC3: Language (Non-English Records) → 𝟓
IC4: Subject Area (Only studies related to Engineering and Computer Science were retained) → 𝟑𝟐
IC5: Document and Source Type (Only conference papers and journal articles were retained,
excluding reviews, books, book chapters, book series, and trade journals) → 𝟒𝟒
IC7: Publication Stage – (Only final publications were retained, excluding in-press papers) → 𝟐
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AND (LIMIT-TO (SRCTYPE, “p”) OR LIMIT-TO (SRCTYPE, “j”)) 
AND (LIMIT-TO (PUBSTAGE, “final”)) 

2.3. Data Extraction and Synthesis 

A risk of bias assessment was conducted using a custom checklist informed by the 
PRISMA 2020 [12] guidelines to ensure the credibility of the findings. The assessment was 
applied to 60 selected studies, focusing on sample size adequacy, clarity of statistical or 
machine learning analysis, reproducibility of methods, and transparency of conflict of in-
terest. Each domain was scored using a predefined three-point scale: 2 = low risk (meth-
odologically sound, no concerns), 1 = moderate risk (some limitations present, but un-
likely to alter findings), and 0 = high risk (serious methodological concerns or missing 
data). Total scores ranged from 0 to 8 across all domains. Studies scoring 7 or higher were 
classified as having a low risk of bias, while those scoring below 7 were deemed to have 
a moderate risk of bias. The scoring breakdown and detailed justifications for each study 
are provided in Supplementary Table S1. 

Among the 60 studies evaluated, 55 were categorized as low risk, and 5 as moderate 
risk, primarily due to limitations in reproducibility or insufficient transparency regarding 
data or code availability. Despite these moderate concerns, no studies were identified as 
having a high risk of bias. Therefore, all studies were deemed methodologically sound 
and were retained for inclusion in this review. 

Data extraction was then independently performed by the authors to minimize errors 
and ensure consistency. The extraction focused on key aspects of each study, including 
research objectives, methodological approaches, and reported outcomes. Following ex-
traction, and in order to address the research questions, the data were synthesized accord-
ing to a set of categories. These included application focus, key trends, dataset, ML tech-
niques, evaluation metrics, key findings, challenges addressed, and suggested future di-
rections. 

3. Results 
This section presents the findings in response to the first three research questions. 

The fourth research question, which focuses on challenges, research gaps, and future di-
rections, is examined in detail in Section 4 and further expanded in Table A1 of Appendix 
A. 

3.1. General Characteristics of Predictive Maintenance Studies 

A text-mining approach was employed to extract and analyze the most frequently 
occurring terms from the reviewed studies. The dataset included titles, abstracts, and key-
words from the total research papers retrieved, using the Scopus export tool. To ensure 
consistency and enhance data quality, a systematic preprocessing procedure was applied 
using Python, including the removal of non-alphabetic characters, conversion of text to 
lowercase, and filtering of common words, incorporating both standard and domain-spe-
cific terms. Additionally, duplicates and redundant terms were removed. A word fre-
quency analysis was then performed to identify dominant terms. Following a similar ap-
proach to [15], a visual representation of term frequency was generated using Python’s 
word cloud library, where the size of each word was proportional to its relative frequency 
within the dataset. 

As shown in Figure 3, the most prominent terms highlight the strong focus on PdM 
and ML applications. Other key terms, such as monitoring, decision, and condition, em-
phasize data-driven maintenance strategies, while detection, classification, and anomaly 
suggest discussions on fault detection and predictive analytics. Additionally, terms like 
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industrial, things, and internet reflect the integration of Internet of Things (IoT) technolo-
gies. Meanwhile, algorithms and forecasting point to model development considerations. 

 

Figure 3. Word cloud of frequent terms in selected studies. 

3.2. Evolution of Research Activity 

Figure 4 illustrates the annual distribution of publications in the selected research 
domain from 2010 to 2025. To obtain a broader perspective on research trends, all filtering 
criteria from this study were applied except for the year filter. Additionally, the broad 
query, as outlined in Section 2.2, was used by considering articles that mention the key 
terms in their title, abstract, or keywords, rather than limiting the search to the title alone. 
The results reveal a steady rise in research activity, surging after 2017 and peaking in 2024, 
reflecting growing interest and advancements in the field. The drop in 2025 is due to the 
year still being in progress. The trend line confirms an overall upward trajectory, under-
scoring the field’s increasing relevance. 

 

Figure 4. Annual publication trend of studies. 

3.3. Applications Across Industrial Domains 

To provide a structured overview, the 60 selected studies were categorized into 7 
sectors based on industrial focus. Four sectors were classified based on clearly defined 
scopes: buildings and heating, ventilation and air conditioning (HVAC) systems, power 
generation and distribution, wind energy, and semiconductor manufacturing. The re-
maining studies were grouped into broader categories: multi-industry manufacturing, in-
dustrial equipment, and transportation. As shown in Figure 5, the number of studies in-
cluded in each category is indicated in parentheses. 

The multi-industry manufacturing category comprises studies whose methodolo-
gies, datasets, or implementation frameworks demonstrated relevance across at least three 
distinct industrial sectors. These include works utilizing cross-sector datasets, proposing 
generalized PdM frameworks, or presenting solutions explicitly designed for application 
in diverse manufacturing environments. In contrast, the industrial equipment category 
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consists of studies focused on specific types of machinery or subsystems (such as motors, 
compressors, bearings, or robotic systems) regardless of the broader industrial domain. 
These studies typically focus on diagnostics at the equipment level using sensor-based 
approaches and are defined by their application within a specific industrial domain. 

 

Figure 5. Categorization of reviewed studies by sector. 

3.3.1. Multi-Industry Manufacturing 

ML-based PdM across sectors uses IoT, real-time data, and scalable AI tools. Ensem-
ble methods like random forest (RF) and extreme gradient boosting (XGBoost) [16] effec-
tively process high-dimensional sensor data for fault prediction. Fog computing with lo-
gistic regression and genetic algorithms enhances real-time decision making in Industry 
4.0 contexts [17]. RF supports cloud-based systems for estimating RUL [18], while, in [19], 
a hybrid DL model achieves high predictive performance using engine and battery data. 
Algorithm selection studies show that RFs and DTs excel on small datasets, while k-near-
est neighbors (KNNs) suits larger ones [20]. For small and medium-sized enterprises 
(SMEs), a structured phased approach is recommended, emphasizing interdisciplinary 
teams and training [21]. Double attention or A2 − LSTM prioritizes features using atten-
tion mechanisms for improved aircraft manufacturing predictions [22], while cyber-phys-
ical systems using historical data offer cost-effective solutions for SMEs [23]. The balanced 
k-star model addresses class imbalance with high accuracy and interpretability [24]. 
Building on these advancements, gradient boosting (GB) and XGBoost remain top per-
formers in RUL prediction and maintenance planning, offering cost and reliability benefits 
[25,26]. 

In the steel and metals industry, a cloud-based fault classification system for hot-
rolling mills integrated digital twin and XGBoost [27], while LSTM autoencoders enabled 
early fault detection in laser welders, with 97.3% accuracy [28]. 

Textiles and wood product manufacturing emphasizes event-driven systems and 
cloud-based ML. A tree-based system using event logs achieved 98.9% accuracy in RUL 
prediction without hardware upgrades [29], while AdaBoost and IoT sensor data classi-
fied machine stoppages in knitting systems with 92% accuracy [30]. 

Food, beverage, and consumer goods applications prioritize cost-effective decision 
support and ensemble learning. A DT combined with a failure mode, effects, and critical-
ity analysis system optimized food production maintenance with 96.3% accuracy [31]. 
Similarly, Arduino sensor systems combined with RF improved overall equipment effec-
tiveness by 13.1% and reduced failures by 62.4% [32]. Building on this trend, ensemble 
learning on IoT data reached 95.9% accuracy in wafer stick production [33]. 

In the pharmaceutical and medical sectors, a hybrid framework using boosted deci-
sion trees and neural networks reduces production disruptions through accurate mainte-
nance time estimation [34]. Expanding on this approach, a multi-model system combining 
SVMs, DTs, and ANNs predicted equipment failures across over 13,000 medical devices 
[35]. 
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Chemical and construction industries apply high accuracy and interpretable models. 
In concrete manufacturing, CatBoost outperformed six other classifiers (F1score = 0.98) 
using sensor data [36]. For petrochemical compressors, XGBoost with Shapley values en-
abled fault prediction and root-cause transparency (area under the curve or AUC > 90%) 
[37]. 

In aerospace, federated learning models predicted anomalies and RUL in aero-en-
gines without raw data sharing [38]. In parallel, ensemble approaches, such as RFs and 
random under-sampling boosted trees, were effective for RUL and fault detection in tur-
bofan engines and pump systems [39]. 

3.3.2. Industrial Equipment 

Industrial IoT and multi-sensor approaches enhance rotating equipment mainte-
nance. A low-cost system used vibration, temperature, and sound signals for bearing 
health monitoring, with DTs outperforming other models [40]. Utility theory was inte-
grated with GB and RF to optimize fault detection in pump systems [41]. LSTM networks 
outperformed traditional models for RUL prediction in compressors [42], while SVMs 
achieved top results for motor fault diagnosis [43]. RFs also proved effective in oil analysis 
for gearbox monitoring [44] and IoT driven motor diagnostics [45]. XGBoost offered the 
best accuracy–speed tradeoff in bearing systems [46], and both regression and ANN mod-
els predicted tool wear under varying lubrications [47]. Applications in mining, thermal 
systems, and cement plant fans further illustrate the adoption of ML models across indus-
tries [48–50]. 

General production systems combine DL and optimization. A CNN-bidirectional 
LSTM model, as demonstrated in [51], detected actuator and turbine faults with 96% re-
call using the MIMII dataset. In [52], a predictive framework combined ANNs, SVMs, and 
the extended great deluge (EGD) algorithm to forecast degradation and optimize multi-
level maintenance scheduling. 

Robotics and automation systems benefit from both historical and real-time data. An 
ANN model trained on enterprise management records and average time-to-failure sta-
tistics predicted packaging robot failures with 91% accuracy without an IoT infrastruc-
ture [53]. Correspondingly, a discrete Bayes filter (DBF) outperformed naïve Bayes (NB) 
in forecasting degradation in robot power systems [54], while, in [55], a digital twin frame-
work using RF accurately detected conveyor belt anomalies like chain slack. 

3.3.3. Transportation 

Maritime and shipyard systems are using hybrid models to detect faults in low-sen-
sor environments. A multi-model approach (GB, LSTM, one-class SVM) enabled early 
fault detection in vessel bearings using entropy-based features [56]. Similarly, an SVM 
with principal component analysis (PCA) achieved predictive accuracy for ballast pump 
failures with only historical data [57]. 

Railway applications demonstrate the value of legacy data and sensor fusion. DTs 
trained on historical records achieved 90% accuracy without real-time sensors [58]. Lev-
eraging locomotive sensor data, another study proposed a hybrid framework combining 
SVM, RF, and digital twin technology, emphasizing the role of digital logging and IoT 
integration [59]. 

3.3.4. Power Generation and Distribution 

For transformers, SVMs trained on data from 16,000 units achieved over 95% ac-
curacy and reduced costs by 13%  [60]. In hydroelectric plants, RFs predicted failures 
within 12– 48 h at 98% accuracy [61]. LSTM autoencoders identified thermal faults in 
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generators with 99% accuracy [62], while Gaussian process classifiers combined with IoT 
sensors achieved 99.56% accuracy in monitoring electrical panels [63]. 

3.3.5. Wind Energy 

A hybrid statistical-ML approach, as presented in [64], used DTs and RFs to diagnose 
turbine faults with over 92% accuracy. In [65], deep neural networks applied to supervi-
sory control and data acquisition (SCADA) data predicted anomalies up to 72 h in ad-
vance. As outlined in [66], feature selection was prioritized over model complexity in fore-
casting subsystem failures. A CNN-LSTM hybrid model, introduced in [67], effectively 
distinguished soft and hard turbine failures using IoT data. Additionally, vibration mon-
itoring using bagged trees achieved 87% accuracy under lab conditions [68]. 

3.3.6. Buildings and HVAC Systems 

A building information modeling and IoT system, as proposed in [69], used SVMs 
and ANNs to predict chiller degradation, with SVMs yielding the best performance. In 
[70], autoencoders detected HVAC anomalies via building automation data. As shown in 
[71], an LSTM model forecast heating system failures up to seven days ahead. Energy use 
and maintenance needs in active chilled beam systems were predicted using XGBoost and 
Gaussian process regression, although the study partially relied on synthetic data [72]. A 
more comprehensive hybrid framework combining SVM, DT, KNN, prophet, and sea-
sonal autoregressive integrated moving average (SARIMA) was applied to hospital 
HVAC systems using building management system and computerized maintenance man-
agement system data [73]. 

3.3.7. Semiconductor Manufacturing 

ML plays a critical role in supporting wafer defect detection and enhancing produc-
tion reliability. Logistic regression with false discovery rate correction achieved 94.64% 
accuracy on the SECOM dataset, enhanced by synthetic minority oversampling technique 
(SMOTE), PCA, and latent Dirichlet allocation (LDA) preprocessing [74]. In [75], RF 
achieved 93.62%  accuracy in wafer failure prediction, aiding maintenance scheduling 
and minimizing interventions. 

3.4. Machine Learning Architectures 

ML models demonstrate versatile and robust performance across industrial sectors, 
with each domain favoring architectures aligned to specific tasks. Tree-based models such 
as RFs, DTs, XGBoost, and GB are among the most frequently employed, as illustrated in 
Figure 6. Temporal networks like LSTM also appear prominently in commonly used ar-
chitectures. 

In aerospace, federated models like FedLSTM offer superior RUL estimation, while 
traditional models show acceptable but limited accuracy. Buildings and HVAC systems 
benefit from SVMs and LSTM-based hybrids for early fault detection, though precision 
varies. CatBoost and XGBoost lead in chemical and construction domains, while ANN 
dominates general production for fault diagnosis and maintenance scheduling. Ensemble 
models consistently enhance accuracy in food, maritime, and rotating equipment sectors. 
Power systems, robotics, and wind energy increasingly rely on DL hybrids for anomaly 
detection and prediction, often surpassing conventional classifiers. These trends align 
with the evaluation emphasis shown in Figure 7, where accuracy, precision, recall, and 
F1-score are the most cited performance metrics. 
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Figure 6. Frequently employed architectures for study evaluation. 

 

Figure 7. Frequently employed metrics for study evaluation. 

However, despite the widespread reporting of these metrics, their interpretation of-
ten lacks critical depth, particularly under conditions of class imbalance or imprecise la-
beling. For example, several studies achieve high overall accuracy (e.g., > 95% with RF 
or SVM models) without disclosing the distribution of faulty versus non-faulty instances. 
In imbalanced datasets like SECOM, this can be misleading, as high accuracy may result 
from bias toward the majority class. Although resampling techniques like SMOTE are 
sometimes used to address imbalance, many studies omit such details, raising concerns 
about the validity of reported results. Furthermore, inconsistencies in threshold settings 
and the lack of confusion matrices or AUC curves complicate meaningful cross-study 
comparisons and hinder critical evaluation of false positives and false negatives, which 
are crucial in maintenance-critical systems. 

In high-stakes industrial sectors such as aerospace, energy, and manufacturing, do-
main-specific metrics like RUL offer a more actionable perspective than traditional classi-
fication metrics. RUL estimates the time remaining before a component fails, enabling op-
timized maintenance scheduling and reduced downtime. Studies leveraging datasets like 
CMAPSS and National Aeronautics and Space Administration (NASA) increasingly 
model RUL as a regression task, evaluated through root mean square error and mean ab-
solute error, with architectures such as LSTM and CNN excelling due to their ability to 
capture temporal degradation patterns. 

To enhance the rigor and operational relevance of predictive maintenance models, 
future research should consistently report dataset balance ratios, sampling methods, and 
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error distributions, alongside standard metrics. More importantly, integrating prognos-
tics-oriented metrics like RUL into evaluation frameworks not only improves interpreta-
bility but also ensures that model performance aligns with real-world maintenance objec-
tives. 

3.5. Commonly Used Datasets 

Several open-source datasets, as shown in Table 2, are widely used in PdM and fault 
diagnosis due to their accessibility and relevance. CMAPSS and NASA turbofan datasets 
offer multivariate time-series data for RUL prediction. MIMII provides audio and vibra-
tion signals from faulty and normal industrial machines for anomaly detection. SECOM 
contains 591 features from semiconductor processes for quality classification. AI4I 2020 
includes telemetry, error logs, and failure labels for prognostics. NASA’s milling and bear-
ing datasets deliver sensor data on tool wear and bearing degradation, supporting diag-
nostics and condition monitoring. 

Table 2. Open-source datasets by domain. 

Dataset Domain 
CMAPSS (NASA) 

Aerospace 
NASA turbofan engine degradation 

MIMII General production systems 
SECOM Semiconductor manufacturing 

AI4I 2020 PdM 
Cross-industry frameworks 

Milling (NASA’s prognostics center) 
Vibration (NASA’s prognostic center) Rotating equipment 

The remaining datasets are derived from real-world industrial operations and typi-
cally contain time-series sensor data such as vibration, temperature, pressure, or flow, 
along with maintenance logs, inspection reports, and system telemetry. Most are propri-
etary due to confidentiality agreements, commercial sensitivity, or infrastructure con-
cerns, and are collected through internal monitoring systems or research collaborations. 
Some are synthetically generated using simulation platforms but remain restricted to pri-
vate use or licensed access. 

Across both public and private datasets, a key challenge lies in the aggregation and 
preprocessing of heterogeneous data. PdM systems, particularly in industrial Internet of 
Things (IIoT) and large-scale manufacturing environments, depend on effective integra-
tion of multi-source information. In modern architectures, data are typically collected at 
the edge (from sensors, devices, or loggers) and streamed centrally using real-time plat-
forms like Apache Kafka and Spark. These tools support temporal synchronization via 
micro-batch processing and map-reduce operations, which structure raw inputs into log-
ically ordered data streams [76]. 

Moreover, data privacy and consistency become central concerns, especially in fed-
erated settings. Privacy-preserving schemes such as differential privacy and homomor-
phic encryption are increasingly used to ensure secure data aggregation, particularly in 
IIoT federated learning architectures. Datasets are preprocessed using techniques like nor-
malization and enhanced through strategies to address missing values, misaligned 
timestamps, and cross-sensor fusion. These steps are foundational for ensuring dataset 
quality, whether the source is a public benchmark or a proprietary industrial stream [77]. 
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4. Discussion 
The findings from this review underscore how ML-driven PdM has expanded across 

a diverse set of industrial settings, including manufacturing, power generation, buildings, 
healthcare, and transportation. Addressing the first research question, which investigated 
the industry applications and latest trends, the analysis shows that many sectors have 
adopted ensemble models and DL architectures to manage complex time-series data from 
sensors such as vibration, temperature, and pressure. Within manufacturing, there is a 
pronounced move from purely rule-based or preventive maintenance protocols to proac-
tive data-rich strategies leveraging AI, while heavy industries, including steel, mining, 
and petrochemicals, are increasingly incorporating digital twins to enhance decision mak-
ing. This broadened application scope reveals a pattern in which access to multivariate 
sensor data, combined with scalable ML frameworks, helps in detecting faults earlier and 
reducing the risk of unplanned downtime. 

A key aspect of the second research question highlights that tree-based methods, in-
cluding RF and GB, dominate a large part of the literature, often due to their interpreta-
bility and ease of parameter tuning when dealing with high dimensional signals. DL net-
works, notably LSTM and CNN architectures, are particularly prominent when analyzing 
noisy or unstructured data such as acoustic signals or multivariate time-series measure-
ments in domains like wind turbines, rotating machinery, and building HVAC systems. 
The observed performance metrics (accuracy, precision, recall, F1-score) confirm that 
these advanced models outperform simpler statistical or rule-based approaches in many 
real-world scenarios. Still, model selection remains context-dependent. Low-sensor envi-
ronments favor robust ensemble approaches, while data-rich environments use more 
complex neural networks for greater predictive accuracy. 

Addressing the third research question on common benchmark datasets, the review 
underscores the repeated appearance of NASA’s CMAPSS, MIMII, SECOM, and other 
publicly available industrial datasets. These open datasets remain essential for reproduc-
ible evaluations, although real-world applications still rely heavily on proprietary data. 
Data scarcity, confidentiality restrictions, and inconsistent sensor coverage frequently 
limit the ability to generalize findings across different industrial environments. 

Building on these observations, one recurring challenge in ML-based PdM systems 
is the limited diversity of machines and sensor types represented in widely used datasets. 
Models trained on homogeneous data, such as single-type machinery or mono-sensor in-
puts, often underperform when deployed in complex industrial settings characterized by 
varied equipment and environmental conditions. Future research should prioritize the 
development and utilization of multi-machine multi-sensor datasets, integrating teleme-
try from pumps, compressors, conveyor belts, robotic actuators, and other asset types 
across acoustic, vibration, infrared, and temperature sensing modalities. This broader in-
clusion would enhance generalization and significantly strengthen models’ resilience to 
unforeseen fault patterns. Moreover, data fusion frameworks and federated learning offer 
promising avenues to achieve this diversity while respecting industrial privacy and data-
sharing constraints. 

By examining the fourth research question, which explores challenges and future di-
rections, this review reveals that issues with incomplete or imbalanced data, lack of stand-
ardization in data formats, and the high computational overhead of complex models con-
tinue to slow the widespread adoption of ML-based PdM. Sectors such as aerospace and 
automotive have demonstrated encouraging results with distributed or federated learn-
ing to reduce the burden of transferring massive amounts of sensor data, but these frame-
works require more robust edge or fog computing infrastructure. Additionally, the inter-
pretability of black-box deep networks remains a frequent point of concern for industrial 
practitioners who need transparent reasoning to justify significant maintenance decisions. 
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Knowledge-driven approaches and explainable AI techniques are therefore emerging as 
critical trends that could bolster trust in automated PdM systems. 

Overall, the review indicates that intelligent maintenance systems are a vital enabler 
of data-centric strategies in Industry 4.0. However, further validation in live industrial 
settings is necessary to address real-time constraints, deployment costs, and integration 
with legacy systems. Encouragingly, among the 60 studies surveyed, 40 papers have al-
ready taken their models out of the lab and into everyday service. These “yes” cases 
stream live sensor data from pumps, turbines, production lines, and similar assets, raise 
work orders automatically through the plant’s maintenance software, and report tangible 
payoffs such as shorter downtime or higher overall equipment effectiveness. Four addi-
tional papers sit in the “partial” category; they analyzed authentic plant data retrospec-
tively but have yet to let their models issue live alerts. The remaining 16 papers are still at 
the “no” stage, evaluated only on test rigs, simulations, or public benchmark datasets. 
Details of this deployment classification are provided in Supplementary Table S1. 

A common thread runs through the fully deployed studies and offers a practical re-
usable roadmap for others. Each deployed study relies on an edge-to-cloud data pipeline 
that uses open protocols for consistent real-time collection of sensor streams. The predic-
tive models themselves are packaged in containers, enabling hot swaps and automatic 
retraining whenever data drift is detected. A lightweight explainability layer helps tech-
nicians understand and trust the alerts. Finally, the prediction output is wired straight 
into the plant’s computerized maintenance management system so that every alert is con-
verted immediately into an actionable work order. Because this architecture has been 
demonstrated in wind farms, refineries, hospitals, and discrete part factories alike, it 
serves as an adaptable framework for moving AI models from controlled tests to reliable 
real-world deployments. 

Research should continue to explore hybrid models that fuse domain knowledge 
with data-driven analytics to mitigate challenges associated with explainability, data qual-
ity, and domain adaptation. Such efforts will likely accelerate the deployment of robust 
PdM frameworks that can adapt to evolving operational demands while remaining eco-
nomically viable and transparent to stakeholders. 

5. Conclusions 
By examining the intersection of ML techniques and maintenance strategies, this re-

view highlights both significant advancements and persistent challenges across diverse 
industrial applications. Data-driven models, particularly ensemble methods and deep 
neural networks, have demonstrated superior performance compared with traditional 
maintenance protocols, especially in fault detection and RUL estimation. However, sev-
eral critical barriers continue to limit real-world adoption. 

One of the foremost challenges is the dependency on labeled data in supervised 
learning approaches. In PdM, obtaining high-quality labeled datasets, where each in-
stance is annotated with a known fault or failure type, is both time-consuming and expen-
sive. This scarcity becomes especially problematic in high-risk sectors where failures are 
rare but impactful. Unsupervised learning can mitigate this issue by uncovering patterns, 
detecting anomalies, and discovering hidden structures in unlabeled sensor data. These 
capabilities make unsupervised methods well suited for maintenance environments 
where labeled datasets are incomplete or unavailable, offering scalable alternatives for 
early fault detection and health monitoring [78]. 

In addition, the unreliability and vulnerability of sensor data, whether caused by 
hardware faults or cyber threats, present further challenges to the robustness of PdM sys-
tems. To address these risks, ensuring the security and integrity of data within cyber-
physical systems (CPSs) is essential. Industrial environments remain particularly exposed 
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to deception, replay, and denial-of-service attacks, all of which can distort sensor readings 
and degrade model performance, leading to inaccurate or missed fault predictions in crit-
ical infrastructures such as smart grids and water treatment facilities [79]. Recent research 
demonstrates that ensemble deep learning methods can enhance the detection of such at-
tacks, even when cyber incidents are infrequent and datasets are imbalanced [80]. In high-
stakes sectors like healthcare and energy, the consequences of undetected tampering are 
especially serious. Techniques based on monitoring the behavior of physical systems, such 
as identifying real-time deviations, have proven effective in detecting advanced threats 
that bypass conventional information technology-based detection systems [81]. 

Another recurring theme is the lack of standardized frameworks that effectively in-
tegrate domain knowledge with algorithmic intelligence. While physics-informed learn-
ing and digital twins offer promising integration strategies, their implementation is con-
strained by edge computing limitations, communication overheads, and model interpret-
ability concerns. To overcome these barriers, future research should prioritize cross-disci-
plinary collaborations that unify data science with engineering domain expertise, along-
side efforts to establish interoperable data standards and benchmarking practices. 

Ultimately, as organizations move toward proactive and intelligent maintenance eco-
systems, attention must shift toward building explainable, scalable, and continuously 
evolving ML models. Emphasizing lifelong learning, transparent decision making, and 
cyber-resilience will be essential to accelerate the maturity of predictive maintenance tech-
nologies and to ensure operational continuity, safety, and efficiency in increasingly com-
plex industrial systems. 
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The following abbreviations are used in this manuscript: 

AI Artificial intelligence ML Machine learning 

ANN Artificial neural network NASA 
National Aeronautics and Space Ad-
ministration 

CMAPSS Commercial modular aero-propul-
sion system simulation 

NB Naïve Bayes 

CNN Convolutional neural network PCA Principal component analysis 
CPS Cyber-physical system PdM Predictive maintenance 
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DBF Discrete Bayes filter PRISMA Preferred reporting items for system-
atic reviews and meta-analyses 

DL Deep learning RF Random forest 
DT Decision tree RQ Research question 
EGD Extended great deluge RUL Remaining useful life 

GB Gradient boosting SARIMA Seasonal autoregressive integrated 
moving average 

HVAC 
Heating, ventilation, and air condi-
tioning SCADA 

Supervisory control and data acqui-
sition 

IIoT Industrial Internet of Things SECOM 
Semiconductor manufacturing pro-
cess 

IoT Internet of Things SLR Systematic literature review 
KNN K-nearest neighbor SME Small and medium-sized enterprise 

LDA Latent Dirichlet allocation SMOTE 
Synthetic minority oversampling 
technique 

LSTM Long short-term memory SVM Support vector machine 

MIMII Malfunctioning industrial machine 
investigation and inspection 

XGBoost Extreme gradient boosting 

Appendix A. Architecture Analysis 

Table A1. Summary of trends, challenges, and future directions across industrial domains. 

Sector 
Citation 

Index 
Trends Challenges Future Directions 

Cross-industry 
frameworks 

[16] 

Real-time IoT data with 
ensemble learning models 

improves factory maintenance 
decisions 

Noisy and imbalanced data, 
single-site generalizability, and 

model retraining needs 

Add rare failure types, 
enhance generalization, 
and evaluate economic 

impact 

[17] 

Fog computing and genetic 
optimization support low-

latency maintenance in smart 
factories 

Real-world validation gaps, 
parameter tuning, and reduced 

failure data from 
undersampling 

Explore DL, test in live 
factories, and assess cost-

effectiveness 

[18] 
Big data analytics with cloud-

based decision systems 
improve PdM planning 

Hard-to-label failure data, data 
variety issues, and limited case 

study generalizability 

Use incremental learning, 
adapt to more machines, 
and include cost analysis 

[19] 
Hybrid ML and optimization 
support failure forecasting for 

sustainable processes 

Overfitting risk, dataset 
limitations, and high complexity 

in live data processing 

Broaden datasets, reduce 
computational load, and 

explore external condition 
impact 

[20] 
Comparing different learning 
models to match data types in 

predictive tasks 

Model performance depends on 
dataset size; lacks DL and cost 

analysis 

Combine models, use 
deeper networks, and 

address imbalance in rare 
failure events 

[21] 
Structured adoption models 
help SMEs start using PdM 

Limited AI skills, small budgets, 
and messy data make 

implementation difficult 

Improve model training 
tools, generalize for more 
industries, and simplify 

integration 

[22] 
Attention-based DL improves 

maintenance prediction 
accuracy 

Needs lots of clean labeled data 
and high computing power 

Use better feature 
selection, test across 

industries, and reduce 
complexity 

[23] 
Using machine status instead 
of sensor data lowers cost for 

SMEs 

Indirect data may miss detailed 
faults; hard to standardize 

models 

Add sensor fusion, test 
double-loop CPS, and 
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improve prediction with 
smart learning 

[24] 
Use of interpretable ML to 

handle imbalanced 
maintenance data 

Risk of losing data from 
undersampling and high 

computation for large datasets 

Extend to more industries, 
use live data, and explore 
hybrid learning methods 

[25] 
Real-time sensor data and 
model tuning to improve 

prediction accuracy 

Limited by benchmark datasets 
and lack of DL for complex 

patterns 

Apply in real-world 
setups and use advanced 

models for broader 
equipment types 

[26] 
Using AI and cost–benefit 
insights to optimize failure 

prediction 

Depends on one dataset, lacks 
real-time data, and ignores full 
cost of large-scale deployment 

Add real-time monitoring, 
test on other industries, 

and refine model 
combinations 

Steel and metals 

[27] 

Combining simulation with 
real-time data through digital 
twins; cloud platforms used 

for real-time monitoring; 
selecting key sensor features 

for prediction 

High dependency on past data 
and simulations; limited testing 

across different setups; data 
gaps and system noise may 

reduce accuracy 

Improve model accuracy 
with more live data; 

expand to other 
industries; evaluate long-
term costs and scale-up 

potential 

[28] 

Using memory-based models 
to detect early failures; relying 
on real plant data for real-time 

prediction; increasing use of 
unsupervised learning for rare 

faults 

Limited failure examples; 
trained only on one plant’s data; 

high false positives; lacks full 
real-time deployment 

Reduce false alerts; test in 
other plant settings; 

include full-scale live 
monitoring and cost 

evaluation 

Textiles and 
wood products 

[29] 

Using machine log data 
instead of extra sensors; 

combining IoT with learning 
models to predict failure time; 
running systems on big data 
platforms for many machines 

at once 

Log data may miss failure signs; 
processing large event files is 

complex; models tested only on 
woodworking machines 

Test in other industries; 
use more types of failure 

predictions; improve 
models for real-time use 

and general use 

[30] 

Real-time machine tracking 
with connected devices; using 

boosting models to predict 
machine stops; combining old 

and live data for better 
accuracy 

Some failures are harder to 
predict; model only trained on 
one type of machine; system 

relies mainly on one data type 

Add more machine types 
and data sources; improve 

how minor failure types 
are handled; check how 
system performs in new 

settings 

Food, beverage, 
and consumer 

goods 

[31] 
Use of decision trees with cost 

and risk analysis to guide 
PdM strategies 

Requires complete and accurate 
data; complex scaling in large 

operations; relies on expert 
input 

Apply to more industries, 
enhance cost modeling, 
and integrate smarter 

algorithms for broader 
decision making 

[32] 
Focus on low-cost sensors and 
models to improve equipment 
uptime in small-scale setups 

Limited model diversity, short 
testing period, and lower sensor 
accuracy may affect long-term 

performance 

Improve model range, use 
higher quality sensors, 

and test system stability 
over time 

[33] 

Integration of sensor data and 
ensemble models for real-time 

fault detection in food 
manufacturing 

Limited features, trained on one 
setup, and computing demands 

may hinder fast decision 
making 

Add more machine 
variables, adapt model for 

real-time use, and 
evaluate financial benefits 

of deployment 
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Pharmaceutical 
and medical 

[34] 
Combining PdM with 

production scheduling using 
simulation and smart models 

High computing needs, limited 
testing beyond one factory, and 

data issues like noise and 
missing values 

Apply to more industries, 
include deeper models, 
and improve real-time 

performance and 
adaptability 

[35] 

Using data-driven models to 
predict failure types and 

timing in healthcare 
equipment 

Hard to detect sudden failures, 
some data gaps, and unclear 

long-term costs 

Add real-time data 
sources, test newer 

models, and explore 
economic impact for wider 

use 

Chemical and 
construction 

[36] 

Use of advanced learning 
models to predict failures in 

construction machinery; 
growing role of real-time 
sensor data in planning 

maintenance 

Models depend on a few sensor 
indicators; no deep models 

tested; results from one site may 
not apply broadly 

Explore deeper models, 
test in varied 

environments, and assess 
long-term costs and 

benefits 

[37] 

Increased focus on making 
prediction models 

explainable; combining ML 
with diagnostic tools in heavy 

industries 

Hard to generalize from one 
refinery case; interpreting 

results in real time is resource-
heavy 

Add more real-time data, 
simplify models for faster 

use, and adapt the 
approach to different 

equipment 

Aerospace 

[38] 

Growing use of decentralized 
learning to protect data and 
reduce network use; use of 

edge–fog–cloud models; 
lightweight models for faster, 

safer updates 

Lower accuracy due to uneven 
data; resource limits on edge 
devices; risk of misleading 
results from combined data 

Improve model handling 
for uneven data; reduce 

edge computing demands; 
test in real industrial 

setups 

[39] 

Adoption of ML for predicting 
failures; preference for 

ensemble models; strong focus 
on data preparation before 

modeling 

Use of only simulated data 
limits real-world relevance; no 

DL tested; manual feature work 
is time-consuming 

Use real-time industrial 
data; try advanced 

models; automate feature 
selection for better 

performance 

Rotating 
equipment 

[40] 

Use of real-time monitoring 
with wireless data 

transmission in low-cost 
industrial systems 

Small experimental dataset, 
increased complexity with more 

features, and lack of cost 
analysis 

Improve speed and 
accuracy of models and 

explore DL in real 
environments 

[41] 
Use of utility theory with ML 
for better decision making in 

maintenance 

Limited by binary models, small 
dataset from one site, and no 

cost–benefit analysis 

Apply to diverse settings, 
test adaptive models, and 
evaluate financial viability 

[42] 

Adoption of LSTM models 
and Grafana dashboards for 

time-based maintenance 
insights 

Sensor noise, missing data, 
model complexity, and lack of 
transformer model exploration 

Improve data quality, 
integrate hybrid models, 

and explore edge 
computing solutions 

[43] 
Two-phase detection and 

classification of motor faults 
using vibration data and SVM 

Small and narrow dataset, 
reliance on one type of sensor, 
inconsistent fault classification 

Expand datasets, add 
more sensors, and use 
digital twins for model 

training 

[44] 
Shift from vibration to oil 
analysis with ML for fault 

detection 

Imbalanced data, no real-time 
monitoring, and limited model 

diversity 

Use real-time data, 
combine methods like 

vibration and oil, explore 
deeper models 
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[45] 
Real-time motor monitoring 
using IoT sensors and ML 

Small dataset, limited sensor 
variety, and communication 

delays when scaling 

Add more sensor types, 
test on larger systems, and 
assess financial feasibility 

[46] 
Use of ensemble and DL 

models to analyze vibration 
data for bearing faults 

Small dataset, missing real-
world validation, and no 

advanced feature extraction 

Expand datasets, improve 
signal processing, and test 

in real-time factory 
environments 

[47] 

AI-driven modeling of 
machining force and tool wear 

under different lubrication 
methods 

Hard to generalize, ANN tuning 
issues, and limited to lab 

conditions 

Validate in real plants, 
add real-time monitoring, 

and test more learning 
techniques 

[48] 
Cloud-based ML and sensor 

integration for predicting 
mining equipment faults 

Single-site data, manual data 
entry, and lack of DL models 

Improve real-time input, 
expand model range, and 
assess economic feasibility 

[49] 
Multi-sensor fusion and data 

preprocessing to improve 
motor condition classification 

Controlled test setting, no DL 
models, and lack of real-world 

deployment 

Test in diverse plants, 
explore advanced 

algorithms, and evaluate 
cost–benefit 

[50] 

Semi-automated diagnostics 
with frequency domain 
vibration analysis and 

ensemble models 

Imbalanced data, limited feature 
methods, and no external factor 

handling 

Use richer datasets, refine 
features, and explore real-

time economic 
implementation 

General 
production 

systems 

[51] 

Rise of hybrid DL models for 
accurate fault detection; 

growing use of real-time data 
from industrial sensors 

High model complexity, limited 
real-world testing, and narrow 
fault coverage from one dataset 

Test in real factories, 
reduce computing 

demands, and explore 
models that predict time 

to failure 

[52] 

Data-driven decision making 
combining ML and 

optimization; use of smart 
scheduling to reduce costs 

Model assumptions limit real-
time use, optimization is slow 

for big systems, and lacks 
detailed cost info 

Add live data from 
sensors, improve speed for 

large setups, and study 
financial impact across 

industries 

Robotics and 
automation 

[53] 

Using past failure data from 
internal systems instead of 
real-time sensors; applying 

neural networks without IoT 
devices 

Limited failure records; no real-
time updates; basic models may 

miss complex patterns 

Collect more data; connect 
predictions to live 

systems; explore newer 
learning methods 

[54] 

Real-time data and ML used 
to track slow wear in smart 
factories; models adapt to 
uncertain sensor readings 

Hard to combine many sensor 
types; limited use outside tested 
factory; matching score still low 

Improve model accuracy; 
test in new settings; 

manage data gaps better 

[55] 

Digital twins closely mirror 
real systems for early 

warning; hybrid learning 
methods used to balance 

speed and accuracy 

High data volume slows 
systems; model fits one setup 
only; DL not used due to cost 

Use smarter models; 
improve speed for real-
time use; test long-term 
costs and broader use 

Maritime and 
shipyards 

[56] 
Use of real-time ship data and 
multiple ML models to detect 

engine anomalies early 

Limited sensors on vessels, 
difficulty in spotting slow 

damage, and high false alarms 
from some models 

Improve feature design, 
add models to predict 

remaining part life, and 
apply to more ship 

systems 
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[57] 

Shift to predictive methods 
without sensors using 

historical pump data for early 
failure alerts 

Small data size, lack of sensors, 
and missing outside factors like 

temperature or water quality 

Add sensor technology, 
collect better data, and 
apply to other shipyard 

systems 

Railways 

[58] 

Move from manual work to 
data-driven maintenance; use 
of historical records instead of 
live sensors; open-source tools 

used for modeling 

Hard to connect models to 
current systems; no real-time 
data used; data quality and 

general use across countries not 
tested 

Add real-time data; test 
with more systems; use 

smarter models for better 
results 

[59] 

Shift toward digital checks 
with sensor data; mix of 

history and real-time used for 
training; focus on improving 
maintenance through simple 

models 

Records still on paper; few data 
types collected; model not yet 

tested in real use 

Test models with real 
data; collect wider data 
types; plan full digital 

upgrade 

Power 
generation and 

distribution 

[60] 

Shift from reactive to PdM 
using historical data; 

increasing use of supervised 
models for maintenance 

planning 

Integrating prediction models 
into existing workflows; lack of 

some condition data; model 
assumes similar environmental 

conditions 

Add more condition 
variables; explore 

advanced models; apply 
to broader networks 

[61] 

Use of real-time sensor data 
for prediction; comparison of 

different learning models; 
growing use of smart 

technology in energy systems 

Selecting key sensor inputs; 
model relies on past data only; 

limited to one plant setting 

Expand to other 
industries; refine variable 
selection; integrate real-

time data streams 

[62] 

Adoption of DL for early fault 
detection; use of time-series 
data from SCADA systems; 
handling rare failures with 
data balancing techniques 

Dataset imbalance; limited 
sensor types used; only six 

months of data; high 
computational needs 

Collect longer term data; 
use more sensor types; 

improve real-time 
deployment; assess cost-

effectiveness 

[63] 

IoT-enabled anomaly 
detection in electrical panels 

using sensor fusion and 
lightweight ML 

Sensor sensitivity, thermal 
camera cost, and integration 

issues 

Scale to large systems, 
optimize sensor design, 
and improve real-time 

processing 

Wind energy 

[64] 
Combining sensor data with 
ML for early fault prediction 

Imbalanced data, limited dataset 
size, and high computation 

needs 

Real-time adaptation, 
wider turbine coverage, 
and cost-effectiveness 

analysis 

[65] 
DL used with condition 

monitoring to predict faults in 
advance 

Data imbalance, limited by 
SCADA data, and inconsistent 

turbine behavior 

Improve real-time 
detection and expand 

sensor integration 

[66] 
Emphasis on data 

preprocessing and feature 
selection over complex models 

Small dataset, missing values, 
and limited generalizability 

Test on larger datasets, 
explore DL, and assess 

economic impact 

[67] 
IoT and hybrid DL models 

used for predictive analytics 

Sensor reliability, high data 
volume, and high model 

complexity 

Improve scalability, 
reduce processing time, 
and test across diverse 

environments 

[68] 
Vibration monitoring paired 

with ML in controlled settings 

Not tested in real-world 
conditions and moderate 

prediction accuracy 

Field validation, deeper 
models, and multi-sensor 

approaches 
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Buildings and 
HVAC systems 

[69] 

Growing use of real-time 
building data, integration of 
building models and sensors 

for smart upkeep 

Limited integration in large-
scale systems, sensor reliability, 

and data quality 

Test in bigger buildings, 
improve data handling, 
explore deeper learning 

for better accuracy 

[70] 

Use of deep models and smart 
sensors in buildings, shift 

toward anomaly detection in 
maintenance 

Small datasets, missing sensor 
data, unclear model results, 

narrow case testing 

Collect more data over 
time, validate in different 

buildings, and assess 
financial impact 

[71] 

Adoption of time-based 
models to predict failures 

early using real-world heating 
system data 

Imbalanced data, inconsistent 
device settings, and early signs 

of failure are hard to detect 

Balance datasets better, 
test deeper models, and 

expand data coverage for 
long-term performance 

[72] 

Combining maintenance 
planning with energy saving 

in HVAC systems using smart 
prediction models 

Dependence on synthetic data, 
limited real-world diversity, 
and high computing needs 

Add real sensor input, test 
across climates, and 

streamline models for 
wider building 

applications 

[73] 

Use of short- and long-term 
models in hospital 

maintenance, combining 
building and maintenance 

data 

Small data window, only tested 
on one type of HVAC system, 
and missing broader testing 

Expand to more systems, 
gather data longer, and 

test across hospital 
equipment for broader use 

Semiconductor 
manufacturing 

[74] 

Rise in use of ML to handle 
complex manufacturing data; 

use of data balancing and 
feature reduction to improve 

model accuracy 

Too many features and too few 
failure cases; limited to past 

data; lacks testing in real 
factories 

Add real-time data; test 
models in working 

factories; explore deeper 
learning methods 

[75] 

More advanced models used 
for predicting equipment 

issues; shift to data-driven 
planning using manufacturing 

sensor data 

Data does not reflect real-world 
factory conditions; 

oversampling may reduce real-
world accuracy; results not 

tested live 

Use real factory data; 
include more sensor types; 
study cost and real-world 

impact 
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