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Abstract: - Federated Learning (FL) was first introduced as an idea by Google in 2016, in which multiple 

devices jointly train a machine learning model without sharing their data under the supervision of a central 

server. This offers big opportunities in critical areas like healthcare, industry, and finance, where sharing 

information with other organizations’ devices is completely prohibited. The combination of Federated Learning 

with Blockchain technology has led to the so-called Blockchain Federated learning (B.F.L.) which operates in a 

distributed manner and offers enhanced trust, improved security and privacy, improved traceability and 

immutability and at the same time enables dataset monetization through tokenization. Unfortunately, 

vulnerabilities of the blockchain-based solutions have been identified while the implementation of blockchain 

introduces significant energy consumption issues. There are many solutions that also offer personalized ideas 

and uses. In the field of security, solutions such as security against model-poisoning backdoor assaults with 

poles and modified algorithms are proposed. Defense systems that identify hostile devices, Against Phishing 

and other social engineering attack mechanisms that could threaten current security systems after careful 

comparison of mutual systems. In a federated learning system built on blockchain, the design of reward 

mechanisms plays a crucial role in incentivizing active participation. We can use tokens for rewards or other 

cryptocurrency methods for rewards to a federated learning system. Smart Contracts combined with proof of 

stake with performance-based rewards or (and) value of data contribution. Some of them use games or game 

theory-inspired mechanisms with unlimited uses even in other applications like games. All of the above is 

useless if the energy consumption exceeds the cost of implementing a system. Thus, all of the above is 

combined with algorithms that make simple or more complex hardware and software adjustments. 

Heterogeneous data fusion methods, energy consumption models, bandwidth, and controls transmission power 

try to solve the optimization problems to reduce energy consumption, including communication and compute 

energy. New technologies such as quantum computing with its advantages such as speed and the ability to solve 

problems that classical computers cannot solve, their multidimensional nature, analyze large data sets more 

efficiently than classical artificial intelligence counterparts and the later maturity of a technology that is now 

expensive will provide solutions in areas such as cryptography, security and why not in energy autonomy. The 

human brain and an emerging technology can provide solutions to all of the above solutions due to the brain's 

decentralized nature, built-in reward mechanism, negligible energy use, and really high processing power In 

this paper we attempt to survey the currently identified threats, attacks and defenses, the rewards and the energy 

efficiency issues of BFL in order to guide the researchers and the designers of FL based solution to adopt the 

most appropriate of each application approach.  
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1  Introduction 
Federated Learning (FL) holds significant 

importance in the current technology landscape due 

to several key factors. Internet of Things (I.o.T.) 

applications with the growth of big data can lead to 

the true implementation of many intelligent 

situations such as smart cities, smart meters, smart 

hospitals, etc.. These clever brushes can fuel many 

critical applications such as smart transfer, smart 

industries, healthcare, and smart surveillance, [1]. 

For the successful development of these smart 

services, a huge number of IoT devices is required 

which are forecasted to collect around 572 

Zettabytes of data, [2]. Such a noticeable increase 

in the size of the IoT network and the volume of 

accompanying data open up attractive opportunities 
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a real opportunity for artificial intelligence and 

mechanical learning. For this purpose, we can train 

Artificial Intelligence (A.I.) and Machine Learning 

(M.L.) algorithms via multiple independent 

sessions, each using our own datasets to optimize 

these smart IoT applications. Depending on the 

type of local workers, FL can be divided into cross 

device and cross silo. Cross-device workers are 

mostly mobile phones, tablets, speakers, and other 

IoT terminal appliances. These local workers can 

log out at any time in the model training process. 

The cross-silo workers are mostly large institutions 

that have high data storage and computational 

capabilities. 

In general, the security aspects that are relevant 

to FL, are confidentiality, availability, and 

integrity. Data privacy preservation, data 

sovereignty, decentralization, incentive 

mechanisms, scalability, cross-organizational 

collaboration, and resilience to data poisoning 

attacks are significant topics to be taken into 

consideration when an FL solution targeting a 

specific sector is to be designed. FL allows 

collaborative machine learning models to be 

trained across multiple decentralized devices 

without sharing raw data, ensuring sensitive data 

remains on users' devices. It also maintains data 

sovereignty for individual users or organizations, 

particularly in regions with strict data sovereignty 

laws. FL distributes the training process across a 

network of nodes, eliminating the need for 

centralized authority, and enhancing the system 

resilience. Incentive mechanisms can be 

implemented, fostering participation and 

cooperation.  

The immutable nature of blockchain provides a 

transparent and auditable record of model updates, 

building trust among stakeholders in sectors where 

this is highly required for example like healthcare 

and finance sectors. In this way, the data remain in 

the administrative domain of their owner, and it is 

only the model updates that are exchanged with all 

the exchanges/updates being recorded in the 

blockchain where whatever is written cannot be 

altered, [3]. Combining FL with blockchain or 

secure multiparty computer technology, the model 

update provider cannot be traced and thus, any 

attack with respect to (inappropriate) model update 

can be detected, [4]. Although blockchain 

adds/improves the level of security, it is not a 

panacea. It is essential for people, businesses, and 

governments to make proactive efforts to defend 

against FL attacks, especially those who will adopt 

this technology, and encourage a culture of total 

awareness, [5], [6], [7], [8], [9], [10].  

Adopting the same principle of performance-

related rewarding in blockchain systems, federated 

learning reward systems are designed to encourage 

contributions by rewarding participants for their 

collaboration according to their performance 

contributions. Examples of applications include 

centralized machine learning for mobile 

crowdsensing, distributed energy storage systems, 

or data marketplaces, [11]. Rewards and “awards” 

can come in a variety of shapes, such as cash, 

cryptocurrencies, non-fungible tokens (NFTs), or 

goodwill. A fair evaluation of the contributions is 

necessary for the distribution of incentives to be 

equitable. The main objectives of FL incentive 

systems are to reward institutions for their 

participation in FL and to entice institutions to 

make high-quality contributions to the gradient, 

[12], [13]. However, the rewarding mechanism is 

in itself prone to attacks. 

Another key issue for FL systems is energy. 

[14], [15], [16], more specifically, both 

transmission energy and computational energy 

usage must be taken into account especially when 

FL is executed in the far edge of the network 

systems in devices that may not be connected to 

permanent energy supply infrastructure, such as 

low-power computing devices and mobile phones 

which have limited energy budgets, [17], [18], 

[19]. Energy consumption becomes an optimization 

problem with the goal of reducing the system's 

overall energy usage while observing a delay cap, 

[20].  

To sum up, as shown in Figure 1, the three 

aspects that have to be thoroughly analyzed by any 

prospective designer/developer of federated 

learning-based solution are: the adopted reward 

mechanism, the defense mechanisms to be put in 

place, and the energy efficiency depending on the 

nature of the application and the devices 

implementing the FL scheme. 

 
Fig. 1: The working gears of a complete FL system 

must have an enabled defense system it must be 

energy efficient and it must have reward-based 

character, [21], [22] 
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In this paper, we survey the literature relevant 

to a) attack and related defense mechanisms, b) 

rewarding mechanisms, and c) energy efficiency as 

well as present the recent developments relevant to 

quantum technologies and brain-inspired FL 

systems.  Quantum technologies and brain-inspired 

FL systems aspire to offer higher energy efficiency 

and performance together. Our aim is to offer an 

advanced kick-start to researchers that are 

interested in the area and most importantly to guide 

the prospective designers and implementers of FL 

systems to make appropriate design choices. For 

example, the rewarding schemes that incentivize 

citizens are different than those that may 

incentivize organizations; the security level 

(measures to defend against a rich or less rich set of 

attacks) depends on the nature of the application 

and its specificities.  Additionally, we discuss the 

interplay, [21], [22] among the three dimensions 

mentioned above and shown in the Figure 1. The 

importance of this discussion increases if we take 

into consideration i) the legislation as the General 

Data Protection Regulation (GDPR), [23] and the 

California Consumer Privacy Act (CCPA) the US 

equivalent of GDPR [24], which makes data 

sharing even less likely to happen and ii) the 2030 

Climate Target Plans according to which the EU's 

ambition is to reduce greenhouse gas emissions to 

at least 55 percent below 1990 levels by 2030. This 

is a significant increase compared to the existing 

target of above the previous target of at least 40 

percent, [25]. 

 

 

2 Defense Measures against Attacks 

 in Federated Learning 
 

2.1  Introduction 
The standard project of the “Federated Machine 

Learning Application and architecture framework” 

was approved by the IEEE Standards Committee in 

December 2018. As a result of that, an increasing 

number of academics and technical specialists 

joined the standards working group and contributed 

to the creation of IEEE Standards regarding FL, 

[26]. There are numerous inherent hazards to 

privacy and security. Malicious local workers may 

sabotage the availability, confidentiality, and 

integrity of data before the model is trained, 

contaminating it. The central server and local 

clients make up the two main FL roles in general. 

The antagonist may gain access to the main server 

or some local clients. The adversary can influence 

the global model while the model is being trained 

by managing the samples or model updates. The 

global model's performance will suffer as a result, 

or a backdoor will be left open. The adversary can 

also infer the personal data of additional 

trustworthy local workers during the model training 

and prediction phases, including through 

membership inference and attribute inference. 

Despite differences in privacy FL has included 

more privacy-preserving methods, attacks on FL 

are still possible, [27]. Examining the local 

workers' data quality prior to the model training 

phase is one way to guarantee the FL model's 

validity. High-confidence data can significantly 

lower the frequency of poisoning attacks and 

increase the model's efficacy.  A different approach 

is to analyze past local worker and server behavior. 

Based on the system logs, credibility measurement, 

and verification procedures should be suggested. 

Additionally, during the training process, the 

dependability of the local employees should also be 

evaluated dynamically. Generally speaking, 

malicious local employees behave differently from 

the majority of dependable local employees. 

Therefore, the unreliable local employees can be 

removed by auditing the model behavior uploaded 

to the central server, [28]. 

The defense systems must identify hostile 

devices, block them from further data impact, or 

eliminate the impact they have on the overall 

model. The defense systems also provide 

protection from specific types of attacks e.g. 

poisoning attacks. The suggested approaches are 

primarily reactive and constantly track client 

behaviors. The main approach of filtering out rogue 

clients has been suggested. AI and ML algorithms 

are used in this strategy to identify model 

modifications or irregular data distributions. 

Another approach using the same basic idea, but 

used to a multi-victim malicious, user attack, is 

suggested and known as sniper. Sniper gives a 

different suggestion for defending against 

poisoning attacks. It’s a different suggestion for 

defending against poisoning attacks. This method 

entails evaluating the effectiveness of the global 

model with each new model update, [11]. 

In this section, we will discuss those attacks and 

relevant defense mechanisms. 

 

2.2 Attacks and Defense Measures 
We start with the backdoor attack which was 

introduced earlier. The major strategy of protection 

from backdoor attacks involves reducing the 

model's size to lessen its complexity and capacity 

while maybe increasing its accuracy. Pruning is the 
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name of this method. The resulting model is less 

expressive, making backdoor assaults more 

difficult to execute. Such a technique also brings 

up some advantageous side effects. In fact, the 

fewer parameters minimize both the likelihood of 

message interception and the cost of 

communication, [12]. For the backdoor attack 

protection in a federated learning system, the 

authors of this paper [29] suggest Focused-Flip 

Federated Backdoor Attack (F3BA). It makes use 

of focused weight sign manipulation to allow the 

hostile clients to compromise only a tiny portion of 

the least significant model parameters. Instead of 

explicitly scaling maliciously uploaded clients' 

local updates, the attack simply swaps the weights 

of some inconsequential model parameters. F3BA 

is able to escape and achieve a high attack success 

rate in the majority of tests. From this, the authors 

claim that even while the current stage of backdoor 

protection offers some robustness, they still expose 

the vulnerability to advanced backdoor attacks. In 

[30], FL was analyzed from an adversarial 

standpoint and created a straightforward defense 

mechanism, especially for backdoor attacks. The 

main concept of this defense strategy was to 

modify the learning rate of the aggregation server, 

per dimension and every round, based on the sign 

information of agents' updates. The studies they 

provide, they demonstrate how this defense 

significantly lowers backdoor accuracy while just 

slightly degrading overall validation accuracy. 

Overall, it outperforms some of the recently 

proposed defenses in the literature. As a final 

comment, they believe the insights behind their 

defense are also related to training in non-. i.d. 

setting, even in the presence of no adversaries. The 

differences in local distributions can cause updates 

coming from different agents to steer the model 

toward different directions over the loss surface. In 

a future work, they plan to analyze how Robust 

Learning Rate (R.L.R.) influences the performance 

of models trained in different non- i.d. settings. 

Another research, [31], focused on the security 

against model-poisoning backdoor assaults, known 

as "backdoor data poisoning" that involves the 

injecting of several watermarked, incorrectly 

labeled training examples into a training set. On 

usual data, the watermark has no effect on the 

model's test-time performance, but on watermarked 

samples, the model consistently makes mistakes 

and generates errors, [32]. To solve this problem, 

authors suggest Robust Filtering of one-

dimensional Outliers (RFOut-1d), a defense 

mechanism based on a robust filtering of one-

dimensional outliers in the federated aggregation 

operator, based on the hypothesis that updates from 

adversarial clients would represent outliers in the 

Gaussian distribution of clients' updates. The 

results of assessing RFOut-1d in a variety of 

circumstances under various backdoor as-saults 

and comparing it to state-of-the-art defenses reveal 

that their claim is correct. As a result, state, RFOut-

1d is a highly effective defensive that reduces the 

effectiveness of backdoor attacks to the point of 

(nearly) nullifying them throughout the course of 

all learning cycles. In several cases, RFOut-1d 

exceeds the results obtained without any attack, 

demonstrating its ability to filter out clients who 

impede the training process. In contrast to previous 

defenses, it does not impede the FL process by 

maintaining (or even improving) the model's 

performance in the initial job. By filtering out 

customers who deviate from this solution, the 

model's convergence to the common solution is 

hastened and optimized. To summarize, it is 

demonstrated that RFOut-1d is a high-quality 

protection as well as an appropriate federated 

aggregation operator by effectively halting the 

effect of attacks while encouraging global model 

learning. 

A dataset could achieve appropriate privacy 

and utility trade-offs thanks to the noise defense 

described in this paper [33]. Even though many 

tasks are straightforward, including signature 

recognition, with data complexity comparable to 

the well-known MNIST dataset utilized in the test 

can benefit from split learning. By post-training the 

computational server's model segment with noise 

while keeping the data owner's model segment 

unchanged, the privacy and utility trade-off could 

be made better. However, this strategy eliminates 

the data owner's exclusive means of model 

inversion defense. Due to its connection to 

differential privacy, a Laplacian noise distribution 

was chosen for this study. However, other 

alternative noise distributions should have a similar 

protective impact and may potentially offer a better 

privacy and utility trade-off. The authors showed 

that, under a split neural network training 

environment, a user's data is vulnerable to exposure 

by an opponent. Even with a little understanding of 

the problem that needs to be solved, this problem 

still occurs. 

In many cases, a malevolent person tries to 

recover the secret dataset that was used to train a 

supervised neural network with model inversion 

attacks, [34]. A model inversion attack that is 

effective should produce realistic samples from a 

variety of sources that appropriately reflect each of 

the classes in the private dataset, [35]. The 
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suggested work is a workable and successful 

defense against FL model inversion attacks. In 

order to obscure the gradients of the sensitive data, 

the authors introduce a concealing sample that 

mimics the sensitive data. Their suggested method 

makes sure that the samples that are used to hide 

sensitive information are visually distinct from the 

sensitive data in order to obfuscate the created 

sensitive information. In order to preserve the 

critical data and prevent performance loss, the 

samples are concealed using adaptive learning. 

Studies revealed that this strategy provides the best 

defense against model inversion attacks without 

losing FL performance when compared to other 

similar defense strategies. 

Another major issue is that sending the FL 

updated models to a centralized server may become 

a difficult task due to privacy issues and significant 

connection constraints. Thus, a recent paper [36], 

suggests an efficient approach for user assignment 

and resource allocation across hierarchical FL 

solutions designed for IoT heterogeneous systems. 

The findings of this study showed that, for the 

same level of model fidelity, the suggested 

approach may greatly speed up FL training and 

lower communication overhead by offering a 

significant reduction in the number of 

communication rounds between edge nodes and 

centralized server. 

Against Phishing and other social engineering 

attack that are often used to steal user data, the 

authors of [37] suggest the use of Phishing 

Detection with Generative Adversarial Networks 

(PDGAN). PDGAN is a revolutionary poisoning 

defense strategy in federated learning. The 

suggested approach is based on a server-side 

generative adversarial network that can reconstitute 

participants' training data. The suggested method 

verifies the accuracy of each participant's model 

using the generated data before identifying 

attackers. Results of the experiment show that by 

verifying the participant model's accuracy, the 

PDGAN can successfully reconstruct the training 

data and defend against the poisoning attack. 

Authors intend to investigate this poisoning 

defense for federated learning with differential 

privacy at the device, class, or user levels as future 

work. 

Anomaly detection methods in data analysis 

are events or observations that deviate significantly 

from the majority of the data and do not conform to 

a well-defined notion of normal behavior. The 

authors of [38] suggested a federated learning-

based anomaly detection system for precisely 

identifying and categorizing threats in IoT 

networks. This method can work as an effective 

defense system. The FL implementation portion of 

the suggested method shares computing resources 

with on-device training, and various GRU layers 

guarantee higher attack classification accuracy 

rates. The ensemble, which integrates the 

predictions from various GRU layers, greatly 

enhances the performance of the technique. The 

potential advantage of user data privacy is a safer 

layer to IoT networks, increasing the dependability 

of IoT devices. Their evaluations show that their 

suggested method outperforms intrusion detection 

algorithms that don't support FL. As a future study, 

we can focus on improving the suggested method 

using an IoT testbed and evaluating it using real-

time data from de-vice-specific data sets that can 

categorize all known and undiscovered IoT device 

vulnerabilities. 

In the study [39], authors have proven that by 

alternating between assaulting and operating 

normally, the adversary evades the defense 

systems' mechanisms and penalties. This can 

happen in on/ off label piping, good/bad-mouthing, 

and on-off free-riding attacks. With good/ bad-

mouthing attacks, adversaries send selected 

gradients that either boost or lessen the influence of 

the chosen victim's gradients on the global model.  

They have studied each of these assaults using 

numerous data sets and proven that they are 

successful against existing defense systems in 

federated learning. They have implemented all 

these attacks on five different FL algorithms using 

different data sets, and two neural network models. 

These findings demonstrate that the suggested 

attacks are successful in each of these scenarios. 

They have built a new federated learning algorithm 

which has been proven capable of mitigating each 

of the proposed assaults concurrently while 

maintaining effective against previously proposed 

threats. 

Researchers demonstrate that a Distributed 

Backdoor Attack (DBA) is more persistent and 

successful than a centralized backdoor attack in 

typical FL through extensive testing on multiple 

datasets, including Lending Club Loan Data 

(LOAN) using image datasets in distinct settings, 

[40]. In both single-shot and multiple-shot attack 

scenarios, DBA improves attack resiliency, 

convergence speed, and attack success rate. 

Researchers show that DBA is more cunning and is 

capable of eluding two powerful Federated 

Learning techniques. Using feature visual 

interpretation to examine its function in aggregate, 

the effectiveness of DBA is described. The authors 

undertake an in-depth investigation of the main 
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variables that are unique to DBA to investigate its 

properties and limitations. According to the 

findings, DBA is a fresh and more potent attack 

against FL than the ones currently used as 

backdoor attacks. For assessing the adversarial 

robustness of FL, the study and findings may offer 

fresh perspectives and new threat assessment 

techniques. A Trusted Aggregation (TAG): Model 

Filtering Backdoor Defense in Federated Learning 

may be an effective method for DBA In this paper 

[41], motivated by differences in the output layer 

distribution between models trained with and 

without the presence of backdoor attacks, authors 

propose a defense method that can prevent 

backdoor attacks from influencing the model while 

maintaining the accuracy of the original 

classification task. TAG leverages a small 

validation data set to estimate the largest change 

that a benign user's local training can make to the 

output layer of the shared model, which can be 

used as a cutoff for returning user models. 

Experimental results on multiple data sets show 

that TAG defends against backdoor attacks even 

when 40 percent of the user submissions to update 

the shared model are malicious. 

Researchers from the University of California, 

Berkeley, [42], describe potential challenges when 

a consumer with no local data can perform a local 

gradient update. These consumers with no local 

data are called ‘Free-riders’. The free rider problem 

is the burden on a shared resource that is created by 

its use or overuse by people who aren't paying their 

fair share for it or aren't paying anything at all. 

Much attention has been paid to the free-rider 

challenge of peer-to-peer programs. There are a 

number of attacks that can be used by an attacker 

and possible defenses against such attacks. This 

study shows a new detection method called STD-

DAGMM, a high-dimensional anomaly detection 

method, is proposed. This method is particularly 

successful in detecting anomalies in model 

parameters. It was also effective in detecting most 

“free riders” under most conditions tested. 

Furthermore, it is found that differential privacy, 

especially the privacy encouragement approach in 

combined studies, tends to identify riders who do 

not participate in the efficacy. The STD-DAGMM 

method in other attacks can be found in combined 

studies, such as venom attacks that are attractive 

for research. The field concluded that much 

remains to be learned about “free riders” about the 

autonomy and countermeasures, especially because 

of the many proposed solutions. It is believed that 

preliminary research may inform subsequent 

efforts in this area. In this research and in the same 

field against “free riders”, [43], it is proposed a 

new defense method based on the Weight Evolving 

Frequency model, referred to as WEF-Defense, 

Authors first collect the weight evolution frequency 

(defined as WEF-Matrix) during local training. For 

each client, it uploads the WEF matrix of the local 

model to the server along with the model weight 

for each iteration. The server then separates the 

“free-riders” from the benign clients based on the 

difference in the WEF matrix. Finally, the server 

uses a personalized approach to provide different 

global models for respective clients. 

An ethical framework for evaluating and 

distinguishing between different types of customer 

privacy attractions has been presented in [44]. By 

analyzing frequent parameter updates, they show 

how adversaries can reconnect private local 

training data. (e.g., local gradient or weight-update 

vector). The impact of different attack schemes and 

hyperparameter settings on client private lock cage 

attacks is identified and analyzed in a federated 

learning study with four widely used benchmark 

datasets.  Initially, a formal and experimental 

analysis of attacker potential is presented reverse-

engineer private local training data by simply 

analyzing parameter updates from local training 

distributed. (e.g., local gradient or weight-update 

vector). Then the possible effects of different attack 

algorithm settings and federated learning 

hyperparameter settings on the attack efficiency 

and attack cost are investigated. In addition, their 

approach to communication-efficient FL protocols 

with different gradient compression ratios tests, 

measure, and evaluate the client's effectiveness -

privacy leakage attacks Their tests also include 

some early mitigation techniques to demonstrate 

the importance of providing a systematic attack 

analysis process towards understanding the loss of 

client secret lockage threats. 

Recent studies have demonstrated that 

Byzantine assaults launched by erroneous or 

malevolent clients can be successful against 

standard federated learning, [45], [46], [47]. Even 

if there is only one attacker, the accuracy of the 

model can drop from 100 percent to 0 percent. The 

accuracy of the combined global model can be 

reduced to 0 percent maximum probability in the 

extreme case where the attacker knows the local 

updates of all non-malicious clients and only needs 

to configure other terms as opposed to another 

normal linear combination. Nowadays, with the 

advent of federated learning, researchers have 

found a new way to address the security and 

privacy concerns of dispersed training. Researchers 

now examine current methods of dealing with 
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Byzantine invasion. They also offer new attack 

mechanisms that could threaten current security 

systems after careful comparison and discussion 

supported by experimental findings. 

Researchers found that local model poisoning 

attacks, which alter the local models sent from the 

compromised worker devices to the master device 

during the learning process, can weaken the 

federated learning methods. The machine learning 

algorithms claimed to be resilient against 

Byzantine failures of some worker devices. In 

particular, an attacker can modify the local models 

on the compromised worker devices so that the 

aggregated global model deviates most from the 

direction along which the global model would 

change in the absence of attacks, increasing the 

error rates of the learned global models. 

Additionally, the search for such carefully 

constructed local models might be framed as an 

optimization problem. To counteract local model 

poisoning attacks, we can expand already-existing 

data poisoning attack countermeasures. Such all-

encompassing protections work in certain 

situations but fall short in others. These findings 

demonstrate the need for new countermeasures to 

fend off local model poisoning attempts. This 

research is only applicable to unintended poisoning 

attacks. De-signing new defense measures against 

local model poisoning assaults, such as new 

techniques to find compromised local models and 

new adversarial resistant aggregation rules, is also 

important, [48]. As a solution to this, a paper [49] 

suggests Local Malicious Factor (LoMar), a two-

phase defense algorithm. In phase I, LoMar scores 

model updates from each remote client by 

measuring the relative distribution over their 

neighbors using a kernel density estimation 

method. In phase II, an optimal threshold is 

approximated to distinguish malicious and clean 

updates from a statistical perspective. 

Comprehensive experiments on four real-world 

datasets have been conducted, and the experimental 

results show that this defense strategy can 

effectively provide protection from a poisoning 

attack on the Federated Learning system. 

The weight attack is another attack that is 

difficult to be mitigated by current defense 

strategies. The key challenge is that the server 

cannot immediately assess the caliber of the local 

data sets of the clients. Researchers then talk about 

some potential de-fences. Although distance-based 

methods like Multi-Krum and Fast Aggregation 

against Byzantine Attacks (FABA) cannot 

withstand the weight attack, we still believe they 

are a viable option. Multi-Krum and FABA both 

fall short because they have a propensity to ignore 

updates that deviate significantly from the 

distribution as a whole. They believe that by 

examining the distribution of local updates, it is 

possible to directly avoid the "bad" updates by 

developing a new distance-based technique. 

Additionally, as demonstrated in trials, 

performance-based defense strategies like Zeno 

outperform other methods by a wide margin. This 

type of protection strategy can perform better in the 

future because analyzing an update's performance 

is the simplest way to tell if it is benign or harmful. 

When the clean test data set is carefully planned for 

particular investigations, the "bad" updates 

produced by the weight attack will undoubtedly 

behave differently. Regarding the statistics-based 

and target optimization-based mitigation strategies, 

that they are adamant they can successfully 

mitigate the weight attack by fully utilizing the 

statistical properties of local updates or choosing 

an appropriate loss to optimize the goal function, 

[50]. 

 

2.3   Blockchain-based Security 

Enhancements for FL 
A centralized network built around a single, central 

server that handles all major model management 

functions presents vulnerabilities studied in [51]. 

Its authors proposed Blockchain Assisted 

Decentralized Federated Learning (BLADE-FL). 

BLADE-FL is a decentralized FL system that uses 

blockchain technology to assist the FL system by 

preventing malicious clients from poisoning the 

learning process and further providing a self-

motivated and trusted learning environment for 

them. The authors demonstrated how successfully 

the BLADE-FL can address any potential 

problems, particularly the single point of failure 

problem that exists in a conventional FL system. 

They have also looked into recently emerging 

challenges like client laziness, resource allocation 

and privacy. Last but not least, they have also 

offered additional relevant potential fixes and 

experimental findings to address these problems, 

which offer directions for the construction of the 

BLADE-FL framework. As future possibilities, the 

research could include some asynchronous and 

heterogeneous studies for various client 

capabilities, such as processing power, training 

data size, and transmitting variety, as well as a 

smart contract design that offers a fair distribution 

of incentives between training and mining. Also, a 

different approach could be by lowering the 

transmission cost of light-weight models using 

quantization and quantum technology and sketches. 
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In principle, using blockchain technology, FL 

Security can be thought of as a distributed 

database— a public ledger— that is accessible to 

everybody. The database verifies and forgery-

proofs each new entry. It suggests a method for 

establishing device trust in which local model 

validation is carried out by a blockchain network in 

place of the central server of a traditional 

centralized FL infrastructure, while model 

aggregation is done on the client side. Every client 

updates a network miner that is linked to it. All 

model updates must be exchanged and verified by 

miners. A miner executes a Proof of Work (P.o.W.) 

for a specific operation with the goal of creating a 

new block stored. The created block also contains 

the aggregated local model updates that are 

available for download by other network 

participants. The global model can then be locally 

computed by each client. By approving model 

updates, this method makes poisoning attacks more 

challenging [50] New literature and research are 

added every day, vanguard algorithms try to detect 

and block the threats that appear every day. Of 

course, the defense mechanisms are always a step 

behind the attack and there is no safe mechanism 

that can close all the backdoors.  For this reason, 

increased vigilance is required and no system can 

be considered safe and reliable at the given time. 

 

 

3 Rewards and Blockchain in 

 Federated Learning 
 

3.1  Introduction 
Rewards and incentives are resource management 

techniques used by all types of systems. Rewards 

and incentives are used by a federated learning 

system to improve the system, to increase 

productivity, and to encourage members to 

contribute to better quality work. 

 

3.2 Alternative Approaches 
The idea of carrying out more righteous deeds with 

better experiences occurs in a suggestion of a 

reward-based participant selection strategy which 

leverages the special property of the FL. The 

proposed approach for the FL system chooses 

participants by taking into consideration rewards, 

with the goal of prioritizing the use of the better 

experiences of the agents who do remarkable 

activities for learning, as shown in Figure 2, [52]. 

The proposed scheme increases the performance 

and efficiency of learning, according to the 

findings of the experiments the authors conducted. 

Learnings were carried out more quickly and with 

fewer agents when utilizing the proposed scheme. 

They intend to do varied evaluations in numerous 

IoT applications as part of their future work, using 

the suggested participant selection scheme to a 

range of IoT systems. Additionally, they will 

examine the scenario in which the suggested 

approach is used for FL with devices that operate 

in highly dissimilar settings. 

 

 

 
 

 

 

 
Fig. 2: Rewards in an FL system can take different 

forms for example, monetary value tokens, or 

games inspired methods. The fair distribution of 

rewards depends on a fair quantification of the 

contributions, [52]. 

 

In [53], the authors first assess the 

contributions of FL institutions to model bias as 

well as predictive performance. They create 

incentive systems based on the Shapley Value 

(S.V.) approximation method that can encourage 

contributions to trustworthy AI by rewarding 

results with a good prediction performance and 

minimal absolute bias. This research adds to the 

body of knowledge in three different ways. In order 

to respond to previous requests for study in this 

Rewards

Digi-
Coins

Tokens/ 
NFT's

Games 
Inspired

Contributor 1 
50%

Cotributor 
3 10%

Contributor 
4 10%

Contributor 
5 10%

Contributor 2 
20%
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area, they begin by analyzing the model bias in a 

medical FL situation. By doing so, they discover a 

slight influence of the distribution of chest X-ray 

scans across various institutions on the FL model 

bias in some cases. They also show that S.V. 

approximations can assess bias in medical FL in 

addition to contributions to predictive performance. 

Thirdly, they create incentive structures that 

compensate FL institutions for their contributions 

to model bias and forecast accuracy. By doing so, 

they respond to earlier requests for study on FL 

reward systems and incentives for reliable AI. 

The interaction between a server and all 

participating devices in a federated learning system 

is modelled in [54] using a Stackelberg game. (The 

Stackelberg leadership model is a strategic game in 

economics in which the leader firm moves first and 

then the follower firms move sequentially). In 

order to maximize each device's specific utility, the 

authors search to identify the best training times for 

the server, reward, and each device. Both the 

server-side deadline and the device-side upload 

time are taken into account by their model. 

Examine how the size-based and accuracy-based 

incentive rules affect the overall system 

equilibrium by taking them into consideration. 

They demonstrate that the suggested game, which 

has a lower bound on the Price of Anarchy (P.o.A), 

is a legitimate utility game. The P.o.A., [55] is also 

a game in algorithmic game theory. Price of 

Anarchy is the difference between the social cost of 

the worst Nash equilibrium and the social optimum 

(i.e., assigning strategies to players to achieve the 

lowest possible social cost). The typical assessment 

of the potential efficiency loss owing to individual 

selfishness, when players are just thinking about 

their own utility and not the overall welfare of 

society, is commonly conceived of as this very 

effective and important notion. By incorporating 

the uncertainty in the upload time, they also expand 

their model. Their demonstration shows that in the 

variable upload time mode, devices spend more 

time on local training. To put the proposed 

federated learning system into practice and enable 

devices to run mining and teaching simultaneously, 

they construct a blockchain-powered testbed. The 

presented models and theoretical findings are 

validated by experiments carried out on top of it. 

The authors of [56] used blockchain technology 

with federated learning to address the issues of data 

privacy, security, and fair compensation in 

distributed machine learning. A thorough 

methodology for scalable recording and rewarding 

of gradients utilizing a mix of off-chain databases 

of records and blockchain was provided. In order to 

validate and verify gradients and choose an 

appropriate device reward, they proposed Class-

Sampled Validation Error Scheme (CSVES). While 

restricting the amount of uploads and validating the 

reported data cost per device, they created a Proof 

of Concept, [57], with a small group of clients and 

rounds to show that the blockchain does not 

interfere with the federated learning aggregate. 

Finally, they create a list of Federated Learning and 

Blockchain components that need further 

investigation in order to be implemented as part of 

future work. As a future study, is the modification 

of CSVES to be a more accurate system for 

judging the quality or utility of local data used to 

train the model would involve more development, 

testing, and analysis of variations on CSVES. They 

also intend to research other validation approaches 

that can precisely estimate the amount of 

compensation for a gradient upload, either based on 

the confirmed number of data points or on assessed 

data model advancement. The need to establish a 

uniform training method that ensures that two 

devices using the same data calculate the same 

gradients has also been highlighted. Adopting this 

standard would ensure consistency in submitted 

results and fairness in reward distribution. 

The authors of [58], have presented an 

effective approximation of CGSV with a bounded 

error and have described a novel Cosine Gradient 

Shapley Value (CGSV) to fairly evaluate the 

expected marginal contribution of each agent's 

uploaded model parameter update/gradient in FL 

without needing an auxiliary validation dataset. By 

utilizing the trick of sparsifying the aggregated 

parameter update gradient downloaded from the 

server as reward to each agent such that its 

resulting quality is commensurate to that of the 

agent's uploaded contributed parameter update 

gradient, authors have developed a novel training 

time fair gradient reward mechanism based on the 

approximate CGSV.  

In order to fairly assess the quality and value of 

the model parameter updates gradients uploaded 

and contributed by the agents in federated learning 

(FL) gradient-based collaborative machine learning 

(CML), the authors [59] introduce a novel 

formulation based in the same algorithm Cosine 

Gradient (CGSV) too. Using this formulation 

again, the authors utilize it to design their 

corresponding rewards in the form of downloaded 

gradients. Their strategy guarantees that agents 

who upload better gradients can also download 

better gradients, producing better local models with 

smaller training losses. Scientists theoretically and 

practically show that their approach is effective in 
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terms of fairness and prediction performance. In 

addition, their method is non-restrictive and 

significantly more effective than existing baselines; 

that is, it takes very little server processing power 

and no additional dataset. Through a 

hyperparameter that regulates the level of altruism, 

their method offers significant flexibility for the 

trade-off between fairly distributed and precisely 

just rewards. The research question is: “Can we 

attain both optimally or is there some sort of 

unavoidable trade-off between justice and 

performance?” Interestingly, a greater altruism 

degree can occasionally result in superior 

predictive performance. It would be fascinating to 

think about the idea of fairness when there are 

some rivals for future work. Additionally, we 

would think about applying our fairness guarantee 

and CML work to additional types of cooperative 

Bayesian optimization, [60]. 

As a result, an agent should eventually be 

rewarded with converged model parameters whose 

resulting training loss (and consequently predictive 

performance) is closer to that of the server, as 

demonstrated by fairness guarantee, if they upload 

con-tribute higher-quality parameter updates 

gradients throughout the entire training process. On 

numerous benchmark datasets, they have 

empirically proven the efficiency of our fair 

gradient reward method in terms of fairness, 

predictive performance, and time overhead. Fair 

gradient reward system, in particular, is 

substantially more effective than several FL 

baselines because it only necessitates little server 

computations. 

 

3.3  Tokens and Cryptocurrency inspired 

Reward Methods 
The authors of this work, [61], have suggested a 

fresh tokenized reward Federated Learning 

technique that makes use of tokens make 

participating clients' contributions and the platform 

for training that successfully encourages long-term 

engagement from high-quality data suppliers. 

Contrary to earlier research, this one includes 

incentives for both providers, instead of employing 

loss, and consumes and profiles data quality using 

accuracy measurement without additional 

overheads measurement. Clients are compensated 

as consumers using their novel proposed metrics 

(i.e., token reduction ratio and utility enhancement 

ratio based on utility measurement). High-quality 

clients are frequently chosen as providers with fair 

compensation using previous accuracy records and 

random exploration. As a result, their incentive 

strategy decreases the rounds and tokens issued by 

malicious providers while boosting the rounds and 

tokens issued by legitimate providers when 

compared to the baseline. Therefore, their incentive 

strategy reveals a token difference between 

legitimate and malicious providers, improving the 

final accuracy by up to 7.4 per cent in comparison 

to the baseline. 

A strong integration of clients with diverse 

profiles for collaborative FL training is made 

possible by training a FL model in a 

communication-efficient way. Authors of this 

research, [62], presented also a tokenized rewards 

method for clients that provided high-quality 

updates. They created a comprehensive strategy in 

which token distribution is structured as quota and 

is based on the value of contributions made during 

the model aggregation phase. Subsequently this 

policy helps better resource sharing due to better 

visibility of local instance parameters. The 

suggested tokenized incentive system, which 

prevents weak updates and attacks on decentralized 

web architecture expected on Web 3.0 Finally 

extensive simulations were used to investigate and 

evaluate the effectiveness of the proposed method. 

In the book article [63], authors proposed 

FedCoin, a blockchain-based payment system to 

support federated learning procedure. Offerings 

like FedCoin could add free computing resources 

to community systems to complete the expensive 

computing services required by the FL incentive. 

The proof of the Shapley (PoSap) consensus 

protocol specifies the Shapley value of each FL 

client, which represents each client's input in the 

entire FL model. A well proposed PoSap, which 

currently builds traditional hash-based protocols 

instead of a bitcoin-based blockchain payment 

system. Each payment is recorded invariably in 

volume. FedCoin FL eliminates the need for a 

central FL service by rewarding customers with 

incentives. Research findings show that FedCoin 

can accurately estimate the Shapley Value-based 

contributions of FL customers across the FL 

sample, providing an upper bound on the amount 

of computational power needed to reach a 

consensus. By doing so, it provides new 

opportunities for non-data owners to contribute to 

the development of the FL environment.  

A survey, [64], addressed the question to what 

extent bias occurs in FL medicine and how to 

prevent excessive bias through reward systems. We 

first evaluated how to measure the contribution of 

medical institutions to predictive performance and 

bias in medical FL cross silo with a Shapley value 

approximation method. In a second step, the 

researchers designed different reward systems that 
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incentivize contributions for high predictive 

performance or low bias. They proposed a 

combined incentive reward system. The paper 

evaluated our work using multiple medical chest 

X-ray datasets focused on patient subgroups 

defined by patient gender and age as a first attempt 

to implement a reward mechanism in the real 

world. 

The reward mechanisms are theoretically 

infinite. The rise of cryptocurrencies platforms and 

the connection to the like of Ethereum II can add 

limitless possibilities. We can create a 

decentralized application for which the participants 

of that particular application are the decision-

making authority like voting systems, banking 

systems, shipping and agreements. 

 

 

4  Energy Efficiency 
There are two ways to earn resources either by 

reward and payment or by saving them. It is 

important to design computing systems from 

scratch whose architecture does not require large 

amounts of energy to operate. For these reasons 

researchers in theoretical computer science are 

figuring out strategies to use less energy during 

computation. 

A federated learning system with various 

wireless or non-wireless networks can be widely 

used in various fields, including the military, 

healthcare, and banking e.c.t.  However, 

participants and any kind of device most of the 

time, have limited resources in terms of power and 

most of the time from a single battery like mobile 

phones or many types of sensors. 

Many of these devices also usually have little 

storage capacity and computing power and have 

other applications to run such as phone calls, 

instant messaging, cameras e.t.c. Thus, in order to 

improve the energy efficiency and extend the 

network bandwidth and battery life cycle, the 

system must present an energy-efficient clustering 

and routing approach based on this genetic 

algorithm. This genetic algorithm will give 

federated learning to speed up and enhance the 

whole process.  

The researchers have theoretically 

demonstrated that very straightforward hardware 

and software adjustments might reduce the energy 

used to operate today's common software 

procedures in half. Additionally, they have 

demonstrated how synchronized modifications to 

both the hardware and software might multiply the 

energy efficiency of computing by a million. For 

routine tasks like searching and sorting, the 

researchers have already created new energy 

efficient Artificial Intelligence algorithms that, 

when used with specially designed computer 

hardware, should result in significant energy 

savings. New energy-efficient methods for 

processing huge data, such as during web searches, 

will result in even bigger savings, [65]. 

The study in [66], offers a federated learning 

method based on a multi-source heterogeneous data 

fusion method. The approach, which is based on 

Tucker's decomposition theory, offers multi-modal 

data fusion and memory usage reduction by 

building a high-order tensor with spatial 

dimensions of heterogeneous data, and it is 

evaluated against many alternative approaches. 

This technique may successfully combine data 

from multiple sources that are heterogeneous, 

lowering the privacy and security obstacles 

associated with data communication. On the basis 

of the heterogeneous data structure owned by the 

training nodes, the approach may simultaneously 

adapt to various heterogeneous data types, 

lowering the training size of redundant models and 

enhancing distributed training effectiveness. The 

reduction of network impact through maximizing 

the use of communication resources, cutting down 

on unnecessary transmission, and decreasing 

network impact. 

Researchers in [67], have looked into the issue 

of FL resource allocation via wireless 

communication networks and energy-efficient 

computation and transmission. They used the 

convergence rate to derive the time and energy 

consumption models for FL. To reduce the 

network's overall computation and transmission 

energy, they have developed a joint learning and 

communication problem using these joint learning 

and communication models. They have presented a 

low-complexity iterative technique to address this 

issue, and for each iteration of this process, they 

have deduced closed-form solutions for the 

computing and transmission resources. The 

suggested scheme performs better than traditional 

schemes in terms of overall energy usage, 

especially for low maximum average transmit 

power, according to numerical data. 

This research, [68], has looked into how each 

participating device in federated learning allocates 

bandwidth, controls transmission power, and 

changes the CPU frequency. The introduction of 

the two weight parameters allowed for the 

optimization of the weighted average of total 

completion time and energy consumption. It is 

possible to determine the appropriate resource 

allocation technique by modifying two weight 
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parameters. Additionally, this increases the 

flexibility and adaptability of our resource 

allocation plan to accommodate various FL system 

requirements. They can attend from the 

experiments that their resource allocation technique 

advances the state of the art, particularly in cases 

where the overall completion time is tightly 

constrained. 

Millions of devices are anticipated to train 

machine learning models in this paper's [69] as first 

examination of a sustainable FL model. For devices 

with intermittent energy availability, this research 

offers a straightforward and scalable training 

technique with verifiable convergence guarantees. 

Authors also demonstrate how the proposed 

framework can significantly outperform energy-

neutral benchmarks in terms of training 

performance. Their framework is made up of three 

primary parts: client scheduling, local client 

training, and server-side global model update. 

Future research includes investigating other energy 

arrival model options. 

In order to conserve energy from two sides, the 

central server and edge devices, scientists looked at 

an energy-efficient federated scheme used in 

wireless federated edge learning networks. First, 

using wireless resource management and learning 

parameter allocation, they created an optimization 

problem to reduce the energy consumption, 

including communication and compute energy. 

Second, by using sparse rather than typical DNN, 

energy can be further conserved based on the 

examination of the energy consumption of various 

learning models. This sparsification and 

optimization strategy has a significant impact on 

energy savings, according to numerical results, 

[70]. 

In an effort, [71], to practical implementation 

of federated learning (FL) over wireless networks 

which are known to require balancing energy 

efficiency, convergence rate and target accuracy 

due to the limited available resources of these 

devices. However, scenarios will not be practically 

applicable for mobile devices where they have 

limited resources, as DNNs usually have high 

computational complexity and memory 

requirements. Researchers propose a green-

quantized FL frame, which represents data with a 

finite level of accuracy in both local training and 

uplink transmission. Here they propose and capture 

through the use of quantized neural networks 

(QNNs) that quantize the weights and activations 

in a fixed precision form. In the considered FL 

model, each device trains its QNN and transmits a 

quantized training result to the base station. The 

simulation results show that the proposed Pareto 

boundary-based FL framework of the problem is 

characterized to provide efficient solutions using 

the normal boundary inspection method. Using a 

design to balance the trade-off between the two 

objectives while achieving a target accuracy 

derived from the use of the Nash negotiation 

solution can reduce energy consumption until 

convergence by up to 70% compared to a basic FL 

algorithm that represents data with full accuracy 

without compromising the convergence rate. 

 

 

5  Quantum Technology Federated 

Learning Systems 
Reaching a balance between performance and 

energy consumption has always been a difficult 

objective to achieve for energy and power-aware 

applications. It’s hard to achieve a balance between 

performance and energy efficiency.  A relatively 

recent research field for defense systems for 

Federated Learning is Quantum Systems according 

to [72]. Quantum Computing is believed to be 

more energy efficient compared to classical 

computing methods especially when high accuracy 

or complexity is required. According to [73], 

quantum computers are faster and more accurate. 

However, the extent to which it can reduce energy 

usage remains unclear, as experts have not yet 

agreed on metrics to determine its energy 

consumption, [74]. The Energy Consumption of a 

Quantum Computer scales very differently than 

that of classical computers, a good example of 

which is the simulation that is used to model the 

probability of different outcomes in a process that 

cannot easily be predicted due to the intervention 

of random variables [72]. In [72], authors compare 

the differences of Byzantine Attacks problems 

between classic distributed learning and quantum 

federated learning. They modify the previously 

proposed four kinds of Byzantine tolerant 

algorithms to the quantum version. They conduct 

simulated experiments to show a similar 

performance but extreme speed capabilities of the 

quantum version with the classic version. 

In [75], authors suggest quantum federated 

learning (QFL), or communication-efficient 

learning of Variational Quantum Algorithm (VQA) 

from decentralized data. The model is trained using 

a VQA, which accesses centralized data; 

distributed computing can greatly reduce training 

overhead. The information is, however, privacy-

sensitive. By aggregating the updates from local 

computation to share model parameters, they 
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enhance data privacy inspired by the traditional 

federated learning algorithm. They create an 

extension of the traditional VQA with the goal of 

locating ap-approximative optimums in the 

parameter environment. Finally, they implement a 

variational quantum tensor networks classifiers, an 

approximate quantum optimization for the model 

and a variational quantum eigen solver for 

molecular hydrogen on the TensorFlow Quantum 

processor. Their algorithm shows model precision 

using decentralized data, which performs better on 

processors available today. Importantly, QFL 

might stimulate new research in the area of safe 

quantum machine learning, [76]. 

 

Table 1. Comparison between Frontier 

supercomputer (June 2020) and Quantum D-

Wave's 2000 qubit Computer & Quantum 

Microsoft’s Azure quantum computing cloud-based 

Federated Learning with Quantum Data service, 

[77], [78], [79], [80], [81], [82], [83], [84], [85], 

[86], [87] 

Feature 

Frontier 

supercomputer 

(June 2020) 

Quantum D-Wave's 2000 qubit 

Computer 

Speed [77] 1.102 exaFLOPS 
158 million times faster than the 

most sophisticated 

Power 

Requirements 
[78] 

21 MW 

The unit only consumes 25kW of 
power 

More energy efficient alternative 

to classical computing methods. 

Cost [79] [80] $600 million 

D-Wave's 2000 qubit quantum 

computer – $15 million. 

 

Microsoft’s Azure quantum 
computing cloud-based service 

$500 dollars’ worth of Azure 

Quantum Credits for use with each 
participating quantum hardware 

provider. 

Information 

needed [81] [82] 

Complex 

information 

Complex information 
(Multi-dimensional analysis in 

quantum computing) 

Processing [83] 

[84] 

Sequential 
processing 

& 

Complete Datasets 

Sequential processing 

& 
Complete Datasets 

Federated 
Learning 

Capabilities [85] 

On demand 

 (Code enabled) 

On demand 

(Code enabled) 

Decentralized 

Character [86] 

On request/  

permissions 

On request/  

pemissions 

Rewards [87] 
On demand 

 (Code enabled) 

N/S (Possible Capability based in 

other features like Defences and 

Energy Consumption) 

 

To conclude our reference to quantum 

computing for federated learning systems, Table 1 

presents the comparison between Frontier 

supercomputer (June 2020) and Quantum D-

Wave's 2000 qubit Computer & Quantum 

Microsoft’s Azure quantum computing cloud-based 

Federated Learning with Quantum Data service. 

We focus on areas where federated learning has 

growth potential by the presentation of the 

problems, we analyze such as energy consumption, 

reward and defense and security mechanisms, [77], 

[78], [79], [80], [81], [82], [83], [84], [85], [86], 

[87]. 

 

 

6 Brain Inspired Federated 

 Learning Systems. 
Neural networks (ANNs) have been used as tools 

in machine learning and artificial intelligence. We 

create images, speech, robots, play games in a large 

and independent palette of applications. Although 

neural networks were originally based on the 

biological neuron, there are fundamental and 

fundamental differences between the operating 

mechanisms of neural networks (ANNs) and those 

of the biological brain of any species, particularly 

in terms of learning processes, biochemical and 

electrochemical processes of energy autonomy and 

reward. This paper presents a comprehensive 

review of current brain-inspired learning 

representations and artificial neural networks, and 

why not the application of bio-brains themselves to 

federated learning based on these advantages such 

as decentralized nature, embedded reward 

mechanism, and negligible amounts of energy. We 

also propose and compare biological mechanisms 

as a function of cost, type of information, reward, 

etc. to demonstrate and enhance the capabilities of 

these networks. Additionally, we delve into the 

potential advantages and challenges that come with 

this approach. All this could create many avenues 

for future research, apart from the bonds of silicon, 

in this rapidly evolving and amazing field that 

could bring us closer to understanding matter and 

intelligence itself. 

In order to train energy-demanding models on 

resource-constrained edge devices, wireless edge 

artificial intelligence (AI) frequently needs very big 

and diverse datasets. A Lead Federated 

Neuromorphic Learning (LFNL) technique is a 

brain-inspired, decentralized, energy-efficient 

computing approach built on spiking neural 

networks, [88], [89]. This method allows edge 

devices to take advantage of brain-like 

biophysiological structures to jointly train a global 

model while assisting in private preservation. 

According to experimental findings, LFNL 

achieves recognition accuracy that is similar to that 

of edge AI methods currently in use, while also 

significantly reducing data traffic and 

computational latency. Additionally, LFNL greatly 
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lowers energy consumption when compared to 

traditional federated learning, with only 1.5 percent 

accuracy loss. Thus, the suggested LFNL can aid in 

the advancement of edge AI and computing that is 

inspired by the human brain. 

 

6.1 Future Potential Technologies using 

 Brain Tissues 
Organoids, [90], are three-dimensional tissue 

cultures usually derived from human pluripotent 

stem cells. What looks like a cluster of cells can be 

engineered to function like a human organ, 

mirroring its basic structural and biological 

characteristics. Under the right laboratory 

conditions, genetic instructions from donated stem 

cells allow or-ganoids to self-organize and grow 

into any type of organ tissue, including the human 

brain. 

In the future, [91], [92], researchers present a 

collaborative, iterative multidisciplinary program 

with the goal of estblishing Organoid Intelligence 

as a type of real biological computing that uses the 

scientific and bioengineering methods outlined 

here in an ethically sound manner to harness brain 

organoids. The ultimate goal is to usher in a 

biological computing transformation that could 

vastly outpace silicon-based computing and AI 

while having a profound global impact. In 

particular, they expect Organoid Intelligence-based 

biocomputing systems to facilitate faster decision-

making (including on large, sparse, and 

heterogeneous datasets that federated learning has 

major issues), continuous learning throughout 

tasks, and outstanding improved energy efficiency 

(that also federated learning has issues) and data 

structure and economy. Additionally, the creation 

of "intelligence-in-a-dish" provides unmatched 

opportunities to understand the biological 

underpinnings of human cognition, learning, and 

memory, as well as a variety of disorders linked to 

cognitive deficits, potentially assisting in the 

discovery of novel therapeutic strategies to address 

these issues.  

There are already hardware approaches to 

artificial intelligence that use an adaptive pool 

computation of biological neural networks in a 

brain organoid. In this approach - which the 

scientists call Brainoware - the computation is 

performed by sending and receiving information 

from the brain organoid using a high-density 

multielectrode array. There are no limitations such 

as high power and time consumption, Neumann 

congestion (physical separation of data from data 

processing), and Moore's law slowdown transistor 

doubling in an integrated circuit, also we must 

never forget that the human brain has the 

dopaminergic pathway mostly involved in reward, 

as shown in Figure 3, [93]. 

 

 
Fig. 3: Brainoware, [93], the computation is 

performed by sending and receiving information 

from the brain organoid in an MEA chip using a 

high-density multielectrode array 

 

In Table 2 the comparison between Frontier 

supercomputer (June 2020) and the hu-man brain, 

an area that O.I. inspired, is presented. We focus on 

areas where we can say ‘’Organoid Intelligence 

and federated learning’’ has growth potential. The 

presentation of the problems we analyze such as 

energy consumption, reward, and security 

mechanisms that federated learning and O.I. 

synergy has a future potential. 

In conclusion, for all these models and features 

mentioned in the above chapters although federated 

learning presents interesting solutions for a number 

of real-world applications it should be pointed out 

that successful and continuous development in 

current systems requires careful consideration of 

computational overhead. Effective implementation 

of federated learning solutions is highly dependent 

on controlling computation costs, and current 

research and development is focused on improving 

FL algorithms and infrastructures to make them 

more scalable and efficient. Real-time processing 

needs and integration problems are very dynamic. 

These obstacles can be overcome and the full 

potential of federated learning can be realized with 

the help of developments in edge computing, 

distributed systems, and optimization approaches. 

 

 

 

 

 

 

 

 1 

Brain Organoid 

MEA Chip 

Multielectrode array 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2024.23.10 Dimitris Karydas, Helen C. Leligou

E-ISSN: 2224-2872 119 Volume 23, 2024



Table 2. Comparison between Frontier 

supercomputer (June 2020) and Human Brain, [77], 

[78], [79], [80], [81], [82], [83], [84], [85], [86], 

[87], [90], [91], [92], [93] 

Feature 

Frontier 

supercomputer 

(June 2020) 

Human Brain 

Speed [77] [90] [91] 

[92] [93] 
1.102 exaFLOPS ~1 exaFLOPS (estimate) 

Power 

Requirements [78] 

[90] [91] [92] [93] 

21 MW 
(Electricity) 

10–20 W 
(Electrochemistry) 

Cost [79] [80] [90] 
[91] [92] [93] 

$600 million Not applicable 

Cabling  

(Cost depended) [81] 
[82] [83] [90] [91] 

[92] [93] 

145 km (90 miles) 

850,000 km (528,000 

miles) of axons and 

dendrites 

Information needed 

[81] [82] [90] [91] 
[92] [93] 

Complex 

information 

With few and/or uncertain 

data 

Processing [83] [84] 

[90] [91] [92] [93] 

Sequential 

processing 

& 
Complete Datasets 

Both sequential and 

parallel processing 
& 

Highly heterogeneous, 

and incomplete datasets 

Federated Learning 

Capabilities [85] [90] 

[91] [92] [93] 

On demand 
 (Code enabled) 

Enabled 

Decentralized 
Character [86] [90] 

[91] [92] [93] 

On request/ 

permissions 
Enabled 

Rewards [87] [90] [91] 
[92] [93] 

On demand 
 (Code enabled) 

Natural process 
Bio-electrochemical 

(Diverse stimuli with a 

positive or desirable 
outcome) 

 

 

7 Overview of the Three Challenges: 

 Attacks and Defenses, Rewards and 

 Energy Efficiency 
Federated learning must take into account the 

protection of privacy and security attacks, as well 

as the detection of dishonest participants who 

freely gather incentives or rewards. A collection of 

these mechanisms is important for federated 

learning. It will crystal show the challenges and 

possible future directions. This part defines the 

topics that will be investigated in future studies. 

Based on our research, we have compiled the 

following collection of questions: 

We've talked about the attacks that benefited 

from transmitting fake local model updates. In 

terms of incentives, adversaries freely obtained the 

profit and instantly reduced the computational 

resources that had been employed in the model 

training process. From an incentive standpoint, the 

adversary is free to profit and instantly reduces the 

computational resources employed in the model 

training process. More study is required on attacks 

in terms of contribution measurements and 

rewards. Other incentive strategies to detect 

spurious model updates should be investigated in 

future studies, which is a more interesting subject. 

Some methods, such as giving specific scores to 

honest and malicious participants after detection, 

may be useful in identifying malicious participants. 

At this time, some FL tools are available that are 

applied in a federated learning environment, such 

as Federated Learning Protection Frameworks, and 

are detailed with their features and limitations. 

Only a few of these systems currently allow a 

simulated federated attack in a real environment. 

As a result, future studies should focus on 

developing FL frameworks with the goal of 

providing maximum privacy protection features. 

Several privacy and security attacks have been 

discussed, demonstrating that traditional FL does 

not ensure data protection. The updated global 

model includes traces that allow private and 

sensitive data to leak. Previously, in federated 

learning, some methods were used to protect 

information from adversaries, but they had some 

drawbacks, such as hiding specific updates from 

clients and adding noise, which reduced model 

accuracy. More cryptographic techniques are 

needed to withstand potential attacks. They result 

in significant computation overhead in terms of 

encryption and transmission costs. It is difficult to 

train data on multiple devices, and it is critical for 

federated learning to combine data from multiple 

devices. Furthermore, when compared to ML, FL 

has a slower effect on convergence. In this case, 

training smaller models with compressing methods 

can accelerate convergence.  The development of 

future algorithms, but dealing with this issue needs 

additional approaches. 

The FL is associated with high latency and low 

bandwidth speeds. These high latency and low 

bandwidth speeds affect the entire reach of a 

network. The yield that is obtained is reduced 

which leads to a high cost in resources and energy. 

Resources that could be directed to other vital 

points of a federated learning system such as 

defense or retaliation. In traditional cases, minimal 

latency is required for rapid learning from the 

backpropagation method, [94], [95]. This job is 

simple in ML, but it requires the use of millions of 

devices to train the algorithm. It delays learning 

and increases latency. Furthermore, because most 

of the settings in FL are accompanied by Wi-Fi or 

5G, bandwidth is a technical problem. The Wi.Fi. 

or 5G bandwidth is inadequate for the FL 

environment, resulting in high latency and a 

relaxed algorithm training process. The device's 

bandwidth has not improved in comparison to the 

device's increased computing capability, resulting 
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in a communication bottleneck. It is suggested that 

in the FL environment, 5G and B5G technologies 

be used and that communication expenses be 

addressed by considering model compression and 

quantization methods. 

Integrating data from various devices is crucial 

for federated learning because training data across 

different devices is a difficult job. This happens 

why because federated learning involves training 

machine learning models on multiple decentralized 

devices or nodes, each with its own local dataset. 

The data show great diversity. Integrating data 

from various devices enriches the training dataset 

by capturing a wider range of features and patterns. 

In this diversity also appear the greatest danger. It 

is an environment where they can easily hide and 

prowl. It is in conjunction with maintaining privacy 

that it is critical to keep the model from collapsing. 

Data from different devices helps balance the 

distribution of training data across the federated 

learning network, ensuring that the model learns 

from representative samples of the population, 

regardless of device type, giving rewards where the 

samples are truly valuable to it. 

Integrating data from various devices involves 

aggregating model updates or gradients that are 

computed locally on each device. This aggregation 

process combines knowledge from different 

devices, allowing the federated model to benefit 

from the collective artificial intelligence of the 

entire network while maintaining the privacy of the 

individual device and the entire network. 

Overall, the integration of data from various 

devices plays a key role in federated learning by 

dealing with data heterogeneity through algorithms 

while preserving privacy, improving model 

performance, and enabling collaborative learning in 

decentralized environments with self-rewarding 

power balancing. model. Once the collective 

information is leveraged from the various data 

sources, federated learning empowers 

organizations to build robust, privacy-preserving 

machine learning models that can operate 

efficiently in distributed and dynamic settings for 

the benefit of the model as well as the participants. 

 Additionally, compared to ML, FL has a 

delayed effect on the convergence. In this situation, 

training smaller models using compressing 

methods can quicken consensus. All this affects 

System Heterogeneity and Training. 

Regarding the rewards of a federated learning 

system, the authors propose a reward-based 

participant selection strategy for the FRL system, 

which increases the performance and efficiency of 

learning by prioritizing the better experiences of 

agents who do remarkable activities. Other 

researchers assess the contributions of FL 

institutions to model bias and predictive 

performance, create incentive systems based on SV 

applications, and create incentive structures to 

compensate FL institutions for their contributions. 

It responds to earlier requests for study on FL 

reward systems and incentives for reliable AI. 

Other authors propose models with the 

interaction between a server and all participating 

devices in a federated learning system using a 

game like Stackelberg game to identify the best 

training times for the server, reward, and each 

device. Games like this add an oligopoly market 

model is a non-cooperative strategic game where 

one firm moves first and decides how much to 

produce, while all other firms follow. The Price of 

Anarchy (P.o.A.) is an algorithmic game theory 

that is the difference between the social cost of the 

worst Nash equilibrium and the social optimum 

(i.e., assigning strategies to players to achieve the 

lowest possible social cost). By incorporating 

uncertainty in the upload time, we expand their 

model and demonstrate that in the variable up-load-

time mode, devices spend more time on local 

training. To put the proposed federated learning 

system into practice, we can construct a 

blockchain-powered testbed and validate their 

models and theoretical findings. 

Another concept is to use blockchain 

technology combined with federated learning to 

address the issues of data privacy, security, and fair 

compensation in distributed machine learning. 

There are proposals like CSVES to validate and 

verify gradients and choose an appropriate device 

reward while restricting the amount of uploads and 

validating the reported data cost per device. We 

can use a Proof of Concept with a small group of 

clients and rounds to show that the blockchain does 

not interfere with the federated learning aggregate. 

Future studies to assess if CVES may be modified 

to be a more accurate system for judging the 

quality or utility of local data used to train the 

model. Another interesting proposal is that we have 

developed a novel training time fair gradient 

reward mechanism based on the Cosine Gradient 

Shapley value (CGSV) to fairly evaluate the 

expected marginal contribution of each agent's 

uploaded model parameter update/gradient in FL 

without needing an auxiliary validation dataset. On 

numerous benchmark datasets, they have 

empirically proven the efficiency of their fair 

gradient reward method in terms of fairness, 

predictive performance, and time overhead. The 

suggestion of a tokenized reward FL technique that 
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makes use of tokens to incentivize long-term 

engagement from high-quality data suppliers. It 

decreases the rounds and tokens issued by 

malicious providers and boosts those issued by 

legitimate providers. This increases the also and 

final accuracy. 

The tokenized rewards for clients provided 

high-quality updates to train an FL model in a 

communication-efficient way. The token 

distribution is structured as a quota and is based on 

the value of contributions made during the model 

aggregation phase. This strategy favors quality 

participation and allows for the integration of 

clients with diverse profiles. Simulations were used 

to evaluate and analyze how well the technique 

performed. 

Novel formulation like cosine gradient Shapley 

value (CGSV) to assess the quality/value of model 

parameter updates/gradients uploaded/contributed 

by agents in federated learning (FL)/gradient-based 

collaborative machine learning (CML), guarantees 

that agents who upload better gradients can also 

download better gradients, producing better local 

models with smaller training losses. This approach 

is effective in terms of fairness and prediction 

performance. This method is non-restrictive and 

significantly more effective than existing baselines. 

Through a hyperparameter that regulates the level 

of altruism, it offers flexibility for the trade-off 

between fairly distributed and precisely just 

rewards. It is interesting to note that a greater 

altruism degree can occasionally result in superior 

predictive performance. The future is to apply 

fairness guarantee and CML work to additional 

types of cooperative Bayesian optimization. Fed-

Coin is a blockchain-based payment system similar 

to cryptocurrencies [96] that uses the Proof of 

Shapley (PoSap) like Proof or Work [97] 

consensus protocol to accurately estimate FL 

client's Shapley Value-based contributions to the 

overall FL model, providing an upper bound on the 

amount of computational power necessary to 

achieve consensus. 

All these systems must be energy-neutral 

especially if portable devices such as mobile 

phones or similar devices are involved.  No one 

wants to drain a mobile battery while training a 

federated learning system. Also, the energy has a 

high cost, [98]. We see a study that offers a 

federated learning-based multi-source 

heterogeneous data fusion method based on 

Tucker's decomposition theory to reduce privacy 

and security obstacles, adapt to heterogeneous data 

types, and reduce network impact. We can also use 

the convergence rate to derive time and energy 

consumption models for FL and developed a joint 

learning and communication problem using these 

models. In this study presented a low-complexity 

iterative technique to address this issue, deducing 

closed-form solutions for the computing and 

transmission resources. The suggested scheme 

performs better than traditional schemes in terms of 

overall energy usage, especially for low maximum 

average transmit power. 

We can look also how each participating 

device in federated learning allocates bandwidth, 

controls transmission power, and changes CPU 

frequency. The introduction of two weight 

parameters allowed for the optimization of the 

weighted average of total completion time and 

energy consumption. This method can increase the 

flexibility and adaptability of the resource 

allocation plan to accommodate various FL system 

requirements. This resource allocation technique 

advances the state of the art, particularly in cases 

where the overall completion time is tightly 

constrained.  A framework for sustainable 

federated learning for devices with intermittent 

energy availability, offering a straightforward and 

scalable training technique with verifiable 

convergence guarantees. It outperforms energy-

neutral benchmarks in terms of training 

performance. Future steps include investigating 

other energy arrival model options.  

An energy-efficient federated scheme to 

conserve energy from two sides, using wireless 

resource management and learning parameter 

allocation. By using sparse rather than typical 

DNN, energy can be further conserved based on 

the energy consumption of various learning 

models. Sparsification and optimization strategy 

shows a significant impact on energy savings, 

according to numerical results. 

There are already defense methods for 

Byzantine attack protection in Quantum federated 

learning. Also, there are Variational Quantum 

Algorithm’s communication efficient learning from 

decentralized data, which algorithm can reduce 

training costs and increase the data privacy offered 

by quantum technologies due to the outstanding 

processing speed. 

The LFNL technique is a brain-inspired, 

decentralized, energy-efficient computing approach 

built on spiking neural networks that allows edge 

devices to take advantage of brain-like 

biophysiological structure to jointly train a global 

model while assisting in private preservation. 

Experimental findings show that LFNL achieves 

recognition accuracy similar to that of edge AI 

methods, while also reducing data traffic and 
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computational latency. Additionally, LFNL greatly 

lowers energy consumption when compared to 

traditional federated learning, with a small 

accuracy loss. LFNL can aid in the advancement of 

edge AI and computing that is inspired by the 

human brain. 

 

 

8 Attacks/ Defenses – Rewards – 

 Energy Efficiency Systems and 

 Possible Combinations 
It is quite difficult for sure to have a system that 

combines all of these characteristics described 

above. It’s hard to provide protection from attacks 

by having an integrated system of defenses, to 

provide rewards during its use, and to be 

energetically neutral. So, we can make some 

assumptions depending on its use and the reason it 

will be used. Of course, this should not cut us off 

from our goal and be an excuse for any concession 

of one against the other characteristic that such a 

system should have. 

Federated learning systems as we have seen 

recently, FL can be a reliable sustainable solution 

for securing critical infrastructure in IoT systems 

from the perspective of privacy and property 

preservation, [99]. Such a system certainly cannot 

discount security issues and provide protection 

from attacks. Also, because it is aimed at I.o.T. 

systems and environments, it should be as energy-

neutral as possible. The only assumption that could 

be made in such a system is that it does not have 

any reward system, especially for industrial use 

that uses millions of sensors for monitoring 

industry procedures, since something like that 

would probably overburden the I.o.T. system.  

Also, as we have seen a federated learning 

system can offer the maximum in maintaining the 

privacy of medical data.  Medical data such as 

patient X-rays, drug combinations, and 

biochemical test results are perhaps among the 

most promising are-as for federated learning, [100]. 

Such a comprehensive system solely because it 

addresses medical data must provide maximum 

security and defense and provide some reward 

system to incentivize participants to provide their 

data. If it is not possible to have a reward system, 

surely there cannot be a discount for security 

issues. Maintaining confidentiality of data records 

is of paramount importance. As far as the energy 

part is concerned, such systems are usually 

addressed to hospitals, pharmaceutical industries, 

or medical device companies that can certainly 

afford the energy cost of such a system. 

Furthermore, federated learning has been 

shown to be particularly efficient in cloud 

computing in strong privacy preservation 

environments, [101]. Cloud computing systems are 

installed in large data centers that undertake energy 

management. As we know, the authors here did not 

deal with energy management and reward but 

focused only on increasing the security level 

offered by such a system. The same is true of 

everyday industrial big data such as federal 

industrial big data mining learning programs, 

[102]. A large industry would certainly be able to 

afford and make discounts on energy cost issues if 

the system is more efficient in terms of safety. It is 

no coincidence that most articles addressing 

industrial systems focus on security and proprietary 

issues. 

Banking [103] and open banking [104] enable 

both banks and individual customers to own their 

banking data, collaborative learning provides 

fundamental support for fostering a new ecosystem 

of buying and selling data and financial services. 

Both of these papers focus on the security systems 

that such a banking system should have. Enchased 

security provides freedom of movement and further 

opportunities for growth. Of course, because the 

reward mechanism is essentially a banking product 

and is the same as security. Security management 

goes hand in hand with money management.  

There are irregular examples that could be 

analyzed. Surely any retreat should be made to the 

one that will have the least impact on a federated 

learning system. This requires an in-depth 

examination of the background in each dimension 

that such a system will be installed and an in-depth 

analysis of costs and operational benefits. 

Table 3 (Appendix) summarizes the extant 

works and their respective characteristics. The 

potential values per design element (associated 

with solution characteristics) are Y if the factor is 

considered in the relevant work, N if it is not, and 

"Ν/S" if it isn't defined or supported. 

 

 

9  Conclusions and Lessons Learned 
Since its presentation as an idea initially in 2016, a 

federated learning system has definitely matured a 

lot. Such a system must implement the necessary 

defenses so as to protect its operation. Depending 

on the nature of the application and the 

corresponding requirements, the implementation of 

strong defense measures may be required. In 

addition, to attract users there should be a fair 

reward system. This system would also be good to 

act as a kind of "cryptocurrency" that would 
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potentially attract financiers who would want to 

buy it without participating in the data exchange. 

Let's not forget that, for example, bitcoin can either 

be mined or bought from an exchange. It can also 

be compounded as parity with any other 

cryptocurrency. The only thing that is certain is 

that the reward - parity, whatever it may be, of the 

one who participates rightfully in such a system 

must be considered proportionate and given, 

otherwise, no one has any reason to participate in 

this particular system. Complex systems, however, 

usually burden the end users with energy and 

money. This should not happen in 2023 where 

everyone is talking about energy, [105].  

With the integration of technologies such as the 

blockchain, transparency was enhanced, and 

transparency, cost reduction, and decentralization 

were achieved. The security and system 

immutability have been enhanced and made 

immutable etc. Applications such as smart 

contracts and cryptocurrencies with the ultimate 

goal of investigating the multifaceted effects of 

these technological developments in various 

aspects of human life such as health, the banking 

sector, etc.  Similarly, other researchers have 

introduced reward mechanisms based on 

cryptocurrencies such as Fedcoin or even game-

inspired reward methods. Various studies have 

focused on energy-efficient federated learning over 

wireless communication networks like iterative 

algorithms at every step of the model, in order to 

provide solutions for time allocation, bandwidth 

allocation, power control mechanism, computation 

frequency, and learning accuracy. Data fusion 

methods based on game theory are also proposed as 

optimization techniques that can be used to solve 

problems in communication environments like 

federated learning for resource allocation, power 

management, rewards, and punishments. 

Indeed, many have critiqued the foundations of 

all these technological approaches, and new models 

are being developed daily, supporting more 

inclusive and equitable approaches and innovation. 

By engaging in critical reflection and 

interdisciplinary dialogue, new technologies and 

researchers in this field aim to further advance 

these new technologies such as quantum-federated 

learning, and strengthen them even more, [106]. 

Technologies that in the future would seem alien 

like Lead federated neuro-morphic learning 

technique which is brain-inspired or even 

biocomputers and Organoid Intelligence. All of 

these approaches not only help to preserve user 

privacy by keeping sensitive data on the device in 

the epitome of federated learning but in parallel 

also enable the creation of more powerful and 

accurate machine learning and artificial 

intelligence models in areas beyond existing 

technology by leveraging diversity of data across 

different devices and locations and in places we are 

never been before. 

We should always keep in mind that it is 

difficult to find a complete defense system that 

provides protection from attack, rewards when 

used, and does not consume energy. So, we can 

make some assumptions based on its use and why 

it is used. Of course, this should allow for any 

concessions to another feature that such a system 

might have without derailing us from the goal of a 

complete federated learning system. 

Each federated learning approach has its 

limitations. These limitations have to do with the 

nature of this technology and the technology used 

for the implementation that we want to use at any 

given time. Thus, there are limitations related to the 

nature of the data, privacy risk limitations, security 

issues, scalability, and representativeness of the 

data.  

The limitations of energy management and 

energy efficiency have to do with the required high 

initial investments, the technological challenges, 

the unclear landscape in the energy transformation, 

and the untargeted energy strategy even at the 

global and local levels.  

When it comes to token-based rewards and 

payments, there are adoption issues like fees, 

transaction costs, gas fees like Ethereum 

Blockchain, laws, and tax issues, and most people 

aren't used to such systems yet. As for the 

technology, quantum computers and biocomputers 

proposed as solutions, the limitations are even 

more, there are limitations in terms of firmware 

and hardware, cost and access are limited only to 

certain organizations that are also early adopters, 

limited and no algorithms, limited networking and 

communication capabilities usually at the 

laboratory level, complexity, and limited control, 

and there are also major issues of bioethics and 

biosafety. Federated learning can be made more 

efficient, more privacy-preserving scalable, and 

secure by enabling the collective training of models 

on decentralized data sources while maintaining 

data privacy and security. 

These systems must enhance their robustness 

to security threats, adversaries, and strategies using 

privacy-preserving techniques, secure model 

aggregations, federated learning controls, secure 

device authentication, watermarking, and targeted 

model verification. 
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Federal learning must improve energy 

management practices. Model training at the local 

level, Edge Computing integration, Real-time 

feedback, and control, Data interoperability and 

standardization, Decentralized energy markets, 

Resilience and robustness, to optimize resource use 

and support the transition to more sustainable and 

resilient energy systems. 

Also, federated learning reward systems should 

provide incentives for active, fair, and transparent 

reward allocation with dynamic reward 

adjustments, multi-stakeholder incentives, long-

term value allocation, token-based incentive 

systems, implementation of gamification and social 

rewards, participation, collaboration, and 

innovation. Leading to the success and long-term 

sustainability of federal learning ecosystems. 

 

 

10   Future Directions and Research 
In the future, federated learning can be experienced 

as a personalized service. Such a service is much 

needed by users and will have a broad perspective. 

The Google keyboard constitutes an example of 

personalized federated learning. Users essentially 

train a linguistic prediction model that aligns their 

language habits while ensuring that data is kept 

locally. Personalization isn’t secure and new 

security and defense issues can arise.  On the other 

hand, in the context of the Internet of Things, 

personalized federated learning can better mitigate 

the impact due to the heterogeneity of user data. 

The idea of federated transfer learning also 

contributes to personalization, different users learn 

again the parameters returned by the global model 

from their own. But are all the users trustworthy or 

accurate, [107]. Instead of trying to make 

technology more energy efficient with non-

computational consequences we can use big data 

and federated learning to generate energy 

efficiency recommendations. Thus, the technology 

becomes immediately energy efficient since it is 

applied on a large scale using other applications as 

platforms, [108].  Time is money and from the 

training of a model to even the commercial 

exploitation of the models takes time, [109]. So, 

there are serious delays before federated Learning 

can pay and it is really a question if it is capable of 

repaying the participants. This temporary mismatch 

between contributions and rewards has not been 

accounted for and quantified by existing profit-

sharing systems. This is definitely one of the issues 

that needs to be resolved in the future. 

Federated Learning is an opportunity for 

collaboration. The possibilities are practically and 

essentially unlimited. From the construction of the 

model, the data production the data extraction, and 

the technology that is required to implement it. To 

understand the possibilities of such a collaboration 

we can see the companies and organizations that 

can be involved. Between organizations, the goal is 

to provide each participant with a federated model 

that performs better than their best local model. In 

this way, even a global model can be created for 

the union of all their data, without privacy or 

scalability problems, [110]. The contribution of this 

study ις while most of the other studies are based 

on studying only defensive attack mechanisms that 

threaten associative learning without a reward 

mechanism for it and the participants. Also, in a 

world where energy is money, you cannot have 

such a system that consumes more (money and 

resources) than it produces. All of these studies 

were used as a problem base for us initially and 

were very helpful for us. In the present paper a 

more holistic approach to the problem is taken and 

this is the basis for our concern and that of the 

readers. We know initially that such work is very 

difficult. Especially for federated learning systems 

very holistic approaches are required. One of these 

is blockchain technology but is not enough. They 

are certainly very difficult to exist and certainly 

depend on the applications they will have. 

Somewhere discounts will be needed where we 

analyze this in a chapter which can also give food 

for thought. In order to give more value to our 

holistic approach as well as to the concerns of 

future research or to the general reader, we have 

incorporated technologies such as quantum with 

the ability to solve and analyze complex strings at 

unimaginable speeds and also the technology of 

bio-brains that is actually now emerging. In the 

current literature, there is virtually no term "Brain 

Organoid-Based Federated Learning" that connects 

this federated learning technology to biological 

molecules that exploit their unique advantages, 

which is useful for us in this work and as a basis 

for thinking about others and research. 
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APPENDIX 
Table 3. Design elements implemented in each work, [29], [30], [31], [33], [34], [36], [37], [38], [39], [42], 

[44], [48], [51], [52], [53], [54], [55], [56], [58], [59], [61], [62], [63], [66], [67], [68], [69], [70], [71], [72], 

[75], [88], [89] 
Design Elements/ Ref Title Attacks Defenses Rewards Energy Efficiency 

[29] On the Vulnerability of 

Backdoor Defenses for 

Federated Learning 

Y 

(Backdoor Attacks) 

Y 

(Various defense 

measures) 

N N 

[33] Practical defenses 

against model inversion 

attacks for split neural 
networks 

Y 

(Model inversion attack) 

Y 

(Simple additive noise 

method) 

N N 

[34] Defense against 

Privacy Leakage in 
Federated Learning 

Y 

(Stronger attacks and 
exhibit a poor trade-off) 

Y 

(Defence strategy based 
on obfuscating the 

gradients) 

N N 

[30] Defending against 

backdoors in federated 
learning with a robust 

learning rate 

Y 

(Backdoor Attacks) 

Y 

(Carefully adjusting the 
aggregation server's 

learning rate) 

N N 

[36] Communication-
efficient hierarchical 

federated learning for IoT 

heterogeneous systems with 
imbalanced data. 

Y 
(Imbalanced Data) 

Y 
(Optimized solution for 

user assignment and 

resource allocation on 
multiple edge nodes) 

N Y 
(Reduce communication 

overhead) 

[37] PDGAN: A novel 

poisoning defense method in 

federated learning using the 
generative adversarial 

network. 

N 

(Poisoning attacks by 

uploading malicious 
updates) 

Y 

(Novel poisoning defense 

generative adversarial 
network) 

N N 

[38] Federated-learning-
based anomaly detection for 

IoT security attacks. 

Y 
(Federated-learning (FL)-

based anomaly detection 

approach to proactively) 

Y 
(Recognise intrusion in 

IoT networks using 

decentralized on-device 
data) 

N N 

[51] When federated 

learning meets blockchain: 
A new distributed learning 

paradigm. 

Y 

(Single central server falls 
apart & server behaves 

maliciously) 

Y 

(Blockchain-assisted 
decentralized FL 

(BLADE-FL) framework) 

N/S N 

[31] Backdoor attacks-

resilient aggregation based 
on Robust Filtering of 

Outliers in federated 

learning for image 
classification. 

Y 

(Model-poisoning 
backdoor attacks) 

Y 

(Robust Filtering of one-
dimensional Outliers 

(RFOut-1d), a resilient 

defensive mechanism) 

N N 

[39] Attacks against 

federated learning defense 
systems and their 

mitigation. 

Y 

(On-off attacks, label 
flipping, and free riding) 

Y 

(Mitigation strategy) 

N N 

[42] Free-riders in federated 

learning: Attacks and 
defenses 

Y 

(Free rider attacks) 

Y 

(New high dimensional 
detection method) 

N N 

[44] A framework for 

evaluating gradient leakage 
attacks in federated 

learning. 

Y 

(Gradient leakage attacks) 

Y 

(Preliminary mitigation 
strategies) 

N N 

[48] Local model poisoning 

attacks to {Byzantine-
Robust} federated learning. 

Y 

(Byzantine failures e.g., 
system failures, 

adversarial 

manipulations) 

Y 

(Two defenses 
generalization) 

N N 

[52] Reward-based 

participant selection for 

improving federated 
reinforcement learning. 

N N Y 

(Reward-based participant 

selection for improving 
federated reinforcement 

learning) 

N/S 

[53]  
Reward Systems for 

Trustworthy Medical 

Federated Learning. 

N N Y 
(An integrated reward 

system successfully 

incentivizes contributions 
toward a well-performing 

model with low bias) 

 

N/S 
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Design Elements/ Ref Title Attacks Defenses Rewards Energy Efficiency 

[54]  

A reward response game in 

the blockchain-powered 

federated learning system 

N N Y 

(An accurate model by 

paying them based on 

their individual 
contributions) 

N 

[56] Record and reward 

federated learning 

contributions with 
blockchain. 

N/S N/S Y 

(A novel validation error-

based metric upon which 
we qualify 

gradientuploads for 

paymet) 

N 

[58] Gradient-driven 

rewards to guarantee 

fairness in collaborative 
machine learning. 

N N Y 

(A novel cosine gradient 

Shapley value (CGSV) to 
fairly evaluate the 

expected marginal 

contribution) 

N/S 

[61] Tiff: Tokenized 
incentive for federated 

learning. 

N N Y 
(TIFF, a novel tokenized 

incentive mechanism, 

where tokens are used as a 
means of paying) 

N/S 

[62] Fedtoken: Tokenized 

incentives for data 
contribution in federated 

learning. 

N N Y 

(A contribution-based 
tokenized incentive 

scheme, namely 

FedToken) 

N 

[59] The trade-off between 

payoff and model rewards in 

Shapley-fair collaborative 
machine learning 

N N Y 

(An allocation scheme 

that distributes the payoff 
fairly) 

N/S 

[63] Fedcoin: A peer-to-peer 

payment system for 

federated learning. In 
Federated learning: privacy 

and incentive 

N N Y 

(FedCoin, a blockchain-

based peer-to-peer 
payment system for FL to 

enable a feasible SV based 

profit distribution) 

N 

[66] Energy-efficient multi-

tasking for edge computing 

using federated learning 

N/S N/S N Y 

(Improvement of the existing 

edge computing to maintain a 
balanced energy usage) 

[67] Energy efficient 

federated learning over 

wireless communication 
networks. 

N N N Y 

(An iterative algorithm solution 

for time allocation, bandwidth 
allocation, power control, 

computation frequency, and 

learning accuracy are derived) 

[68] Joint optimization of 

energy consumption and 

completion time in federated 
learning. 

N N N Y 

(A resource allocation 

algorithm CPU, frequency, for 
each participating device) 

[69] A framework for 

sustainable federated 
learning. 

N N N Y 

a practical framework that 
utilizes intermittent energy 

arrivals for training 

[70] Toward energy-

efficient federated learning 
over 5g+ mobile devices.. 

N N N Y 

(Energy-efficient learning 
techniques (gradient 

scarification, weight 

quantization, pruning, etc). 

[71] Green, quantized 

federated learning over 

wireless networks: An 
energy-efficient design. 

N N N Y 

(Pareto boundary using the 

normal boundary inspection 
method) 

[72] Defending against 

byzantine attacks in 

quantum federated learning. 

Y 

(Byzantine attacks) 

Y 

(Emulated experiments to 

show a similar 
performance of the 

quantum version with the 

classic version) 

N N/S 

[75] Quantum federated 

learning with decentralized 

data. 

Y 

(Improvement data 

privacy by aggregating 
updates from local 

Y 

(Improvement data 

privacy by aggregating 
updates from local 

N/S Y 

(Communication-efficient 

learning of VQA from 
decentralized data) 
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Design Elements/ Ref Title Attacks Defenses Rewards Energy Efficiency 

computation to share 

model parameters) 

computation to share 

model parameters) 

[89] Lead federated 

neuromorphic learning for 

wireless edge artificial 
intelligence. 

Y 

(Enable edge devices to 

exploit brain-like 
biophysiological structure 

to collaboratively train a 

global model) 

Y 

(Enable edge devices to 

exploit brain-like 
biophysiological structure 

to collaboratively train a 

global model) 

N Y 

(A lead federated 

neuromorphic learning 
technique) 

[88] Organoid intelligence 

(OI): the new frontier in 

biocomputing and 
intelligence-in-a-dish. 

Frontiers in Science. 

N/S N/S N/S Y 

(Stimulus-response training 

and organoid-computer 
interfaces) 
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