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LAPLACE TRANSFORMATION FOR THE -ORDER 

GENERALIZED NORMAL, 2,N  

 

Abstract 

We discuss a number of properties of the univariate -order 
generalized normal distribution, acting also as a solution to the heat 
equation. More emphasis is given on the Laplace transform of the 
introduced distribution. Logarithm Sobolev inequalities are discussed 
since they are the source of the introduced .,N  
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1. Introduction 

In his early paper, Bliss [3] presented an integral inequality and the set of 
functions which turn inequality to equality. In this light some years later, 
while Sobolev was working on the problem of evaluation of the relation 
between the lower orders of the derivatives of a given function, with their 
upper orders, he came across the Sobolev Inequalities [20]. The impressive 
Sobolev inequality is: 
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 (1) 

with 2
2

p
pq  or in a compact form 

2fCxf q  (2) 

with p being the number of the involved variables (in Analysis the usual 
notation is n). Inequality (2) is valid for a differentiable function with 
compact support, f  is the gradient of f and the Sobolev constant C equals 
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Notice that in (1) equality holds if and only if 

222 qrxxf  

with ,R  ,0  .pr R  Notice that the Sobolev inequality can be 

defined also on a sphere, see [2]. 

The exponent q is crucial in (1), as only with such a q it holds, where the 
dimension .2p  Moreover Sobolev proved that there exists a function 

embedding the Banach space XW pm,  of the functions of XLp  into 

XLp  or to the space of continuous function ,XC  for particular m, p, q. 
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An important application of Logarithm Sobolev Inequality (LSI) is due 
to Markov Chains [8]. 

Nash’s inequality is related to LSI. Moreover, by Nash’s inequality [17], 
it is equivalent to evaluate the function yxth ,,  such that 

,0,,,sup 2 tCtyxth p  (4) 

with yxth ,,  being the fundamental solution of the Cauchy problem. The 

function yxth ,,  is the solution of the “heat equation”, see [11], for 

statistical line of thought, while see [22], from analysis point of view. This 
equals 

.4exp
4

1,,
2
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yx

t
yxth p  (5) 

The LSI was due to [21]. We recall the Gross logarithm inequality [9], 
with respect to the Gaussian weight 

p p dmgdmgg
R R

,1log 222  (6) 

where 

.exp,1, 2
2

2 dxxdmgdmL p �R  

The Gross inequality (6) is equivalent, [23], to the Euclidean LSI as in 
(7): 

p p dxgpe
pdmgg

R R
222 2log2log  (7) 

with 

p dxgWg p
R

R .1, 22,1  

Relation (7) is very crucial, being in the order with the normal 

distribution, as the extremals of (7) with ,,, 2xfxg  ,0  
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,pR  see [5, 14], are normal distributions. From (7) the -order 

generalized normal distribution emerged [14]. 

2. Probability Extensions - ,N  

Following is the extension of [18] for LSI, as defined in (6) for 

p1  and pWf R,1  with 1pf  of the form 

,,, fJfI  

with 

p dxfffI
R

,log,  

.log,, 2 p dxfpfJ
R

 

The optimal constant  is 

,1 2
1

pAep  where ,
11

12,
p

p

pAA  

where  denotes the gamma function. 

Consider ,,N  see [14, 16], with position (mean) vector , positive 

definite scale parameter matrix ,ppR  extra shape parameter  
1,0R  and density function ,;x  given by 

12
1exp,; xQCx  (8) 

for ,px R  where 

xxxQ T 1  (9) 
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with 

,

1

,, 212

1
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p

 (10) 

and ,pAA  as above. Figure 1 illustrates the pdf of 2,0 pIN  when 

.2p  See also [10] for a number of graphs of different values of . For an 

extensive analysis of ,, 2
pIN  see [15] for ;1p  and, for ,1p  see 

[16]. 

 

 

Figure 1. Plots of 2,0; pIx  for different values of 2, p  and 

.1  

The generalized -order multivariate normal distribution introduced by 
[14] has been discussed in detail by [16], while the univariate case was 
analyzed in [15]. In [16, Theorem 3.1], it has been proved that for 0  
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2,1and p  x  coincides with the Dirac distribution and for 

,2,1  coincides with the uniform, normal and Laplace distributions, 

respectively. For ,2  the well-known normal distribution is achieved, see 

also Figure 2. 

Furthermore, the classical entropy inequality [6], can be extended to 

.112
121

XJXVarp
e  (11) 

Actually XJ  represents an extension of Fisher’s entropy type 

information measure 

p dxfXJ
R

log  

p dxff
R

1  (12) 

as with ,2  

p dxfXJ
R

2
2 log  

p XJdxff
R

log  (13) 

see [14]. 

The heat equation [11, Chapter 7] can be generalized through the x  

distribution as follows: Consider a standard Brownian motion 0; ttX  

coming from ,,0 tN  i.e., from the -order generalized normal distribution 

with density function 

11exp,0;
t

x
t

tx  (14) 
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with 

,1

11

12
1 1

 (15) 

see [13], for details. 

Theorem 1 (Kitsos [13]). There exists a well defined function 
,; txKK  such that 

tK
x2

2
 (16) 

with ,,;
,;,; txD

txNtxKK  where 

,1
1 1
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12
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t
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tD  (17) 

For ,1t  we find that 112
1,1; xxD  and therefore 

,1;xK  is defined for 11x  and in principle .1x  See Figure 3 

below, for a graphical representation of ,1;xK  for various values of , 

where a special consideration is needed for the x-values at MATLAB. Notice 
that, see [13, Corollary 4.1], for ,2  

22,; txKK  (18) 

and therefore (16) is reduced to the classical heat equation [11]: 

.2 2
2
2

2

tx
 (19) 
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As far as the corresponding values of ,1;xK  are concerned for 

,2  the -order generalized normal distribution is reduced to normal and 

,2K  while for ,1  01,1;0K  and for ,0,0x  

1,1;xK  is constant, see Figure 3. 

Recall that for 1  and ,1,0,1 ttp  the defined x  

distribution as in (14) approaches the uniform distribution while for  

the x  distribution approaches the Laplace distribution, [12]. 

3. Laplace Transform of the 2,N  

For ,1p  the Laplace transform of 2,;x  is defined as 

.,;exp 2 dxxxL  (20) 

Equation (20) characterizes the r.v. X uniquely in the sense that the p.d.f. 
of X can be recovered by taking the inverse Laplace transform in (20). The 
following result provides expression for (20). 

 

Figure 2. Plots of the univariate 1,0;x  for different values of . 
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Figure 3. Plots of ,1;xK  for different values of . 

Theorem 2. The Laplace transform of 2,;x  with 1p  reads 

0
0

2
1

0
0 ,12!2

1
1

0

j

j jj
eL  (21) 

where 1
0  and .1

0
1  

Proof. We rewrite (20) using (8) as 

dxxQxC 12
1expL  

dxxxC 11exp  

,1exp 1 dzzzeC  

where the typical variable transform is given by .xz  Therefore 

the evaluation of the integral 
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0
11exp: dzzzI  

is needed, since then 

0
1

1exp dzzzeCL  

0
1

1exp dzzz  

0
11exp dzzzeC  

0
11exp dzzzeC  

so due to the definition of ,I  the above relation is reduced to 

.IIeCL  

Now, due to the definition of the constant term, see also (10), we have 

.
11

12
11

21

1

IIeL  (22) 

Writing the exponential in the integral as 

0 !j

j
z

j
ze  

and using Fubini’s theorem, we have 
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where we have also used that 

0 101
1 110 11 sdxex

s
xs  (23) 

for ,1js  ,10  .1 01  Therefore by adding I  and 

I  and using (22), we get the representation 
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or by using the value ,223  we have 

0
0

2
1

0
0 ,12!2

1
1

0

j

j jj
eL  

which is exactly (21). 
 

Corollary 1. When ,2  the Laplace transform of the classical normal 

distribution 2,N  is obtained as 
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.2exp
22
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Proof. By (21) for ,2  
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which is indeed the moment generating function of the normal distribution. 
 

Corollary 2. When ,  the Laplace transform of the Laplace 

distribution with parameters ,  is obtained as 

.
1

1
22eL  

Proof. Letting  in (21), L  tends to ,L  where 
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221
1e  

for all  such that ,1  which is the moment generating function of the 

Laplace distribution. 
 

In the following Theorems 3 and 4, we introduce one more 

representation of the Laplace transform of 2,N  adopting the Beta 

function and an upper bound in compact form in terms of expectation. 

Theorem 3. The Laplace transform of 2,N  is equivalent to 
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when 0  is integer in  cases where .,1 Nkk  

Proof. We turn once more to (21) in order to get a more suitable 
expression. By (21), we have  
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where B is the multivariate Beta function with 12 j  arguments. We may 

write 

 000 ...,,,B  

1

0

1

0 2
112

2
1

21
12

1
1

1
0000 11 dyyydyyy jj  



Christos P. Kitsos and Ioannis S. Stamatiou 14 
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Therefore, we express the Laplace transform (21) in the form (24). 
 

Theorem 4. The Laplace transform of 2,N  in terms of the 

exponential moments of the standardized 1,0N  is bounded in the 

following way 

,2exp
222 Ze EL  (25) 

where 1,0~ NZ  and .,0~ 22 NZ  

Proof. Let ,1,0~ NZ  that is the r.v. Z has the law of the standard 

univariate ,1,0N  with pdf .1,0;x  Then 
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where, in the second step, we have used [15, Lemma 2.1], and in the fourth 

step, the inequality !.2!2 jj j  The last equation implies (25). 
 

Inequality (25) turns to equality for the limiting cases of 0  and 

.1  Indeed, we have 

Corollary 3. When ,0  the Laplace transform of the Dirac 

distribution D  is obtained as follows: 

.exp0L  

Proof. Recall (25) and the fact that 1,0N  becomes the Dirac 

distribution 0D  as ,0  see [16]. Then taking the limit as 0  in the 

R.H.S. of (25), we have 

duuueduuue 2exp2exp
222222

 

exp  

for 0  which is the Dirac distribution ,D  while also 

.explim 0
0

DLLL  
 

Corollary 4. When ,1  the Laplace transform of the uniform 

distribution with parameters ,  is obtained as follows: 

.2
1

1
eeeL  

Proof. Recall (25) and the fact that 1,0N  becomes the uniform 
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distribution in 1,1  as ,1  see [16]. Then taking the limit as 1  in 

the R.H.S. of (25), we have 

1

1

222222

2exp2
1

2
1

2exp duueduue  

2
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.22

1 2
dxee x  (26) 

Note that 

,22
2

xerfiixerfidxex  

where erf  and erfi  are the error function and complex error function 

accordingly and i the imaginary unit so 
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where I  denotes the imaginary part of a complex number. Note that we 

have used .zerfzerf  Moreover, 

2

0
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where  is the c.d.f. of the standard normal. Finally, using 

 
t x dxet 22

2
1  

0

12

!212
1

2
1

2
1

k
k

k
k

kk
t  



Laplace Transformation for the -order Generalized Normal, … 17 

at ,it  (27) and (28) in (26), we obtain 
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where it has been used that 11 12kk iI  which is easy to show by 

distinguishing odd and even values of k. To conclude notice that the Laplace 
transform ,1L  of the uniform distribution in ,,  can be 

easily obtained as: 

dxe x
2
1lim 1

1
LL  

,22
1 eeeee  

which is the same as (29). 
 

Corollary 5. The Laplace transforms of the uniform, normal and 
Laplace distributions are functions of the Laplace transform of the Dirac. 

The above results are collected in Table 1, with other values  around 2 
and 3 to compare “fat-tailed” distributions. The calculations have been 
proceeded with MATLAB. These provide evidence that the Laplace 
transform can be easily calculated for the univariate -order generalized 
normal distribution, due to Theorem 2 for any given value of . 
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4. Discussion 

The Weak Law of large numbers, by Bernoulli in 1713, was the first step 
towards the Probability Theory. Later on, in 1733, the normal distribution 
appeared as an approximation to the probability for sums of Binomial 
distributed quantities, to be in between two given values, by de Moivre, as 
the spiritual research in [7]. It was Gauss in 1809 in his “Theoria Motus 
Corponum Coelestim” stating the Least Squares, known to him since 1795, 
declaring that the model was appropriate when the “errors” were coming 
from a normal distribution (in current terminology) [19]. The hypothesis of 
errors were established and adapted especially by the astronomers [1]. 

Table 1. Laplace distribution of 2,N  for different values of  and 
,  

 Distribution L  

0 Dirac  exp  

0 Dirac 0  1 

1 Uniform ,  eeexp2
1  

1 Uniform 1,1  ee2
1  

1.9 1,09,1N  642 0169.01117.04811.05348.0  

2 Normal 2,  2exp
22

 

2 Normal 1,0  
2exp
2

 

2.2 1,02,2N  642 0297.01516.05340.06139.0  

2.4 1,04,2N  642 0400.01778.05638.06541.0  

3 1,03N  642 0764.02520.06340.07385.0  

3.5 1,05,3N  642 1105.03073.06775.07837.0  

 Laplace ,  221exp  

 Laplace 1,0  211  
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The Gaussian distribution has been generalized, as in Section 2, due to 
the introduced parameter , refer [15, 16] also. So in this paper -order 
generalized normal distribution is discussed as an extension of the normal 

distribution with mean  and variance ,2  introducing an extra shape 

parameter. This distribution has emerged as an external from LSI, [14] and 
helps for the use of LSI in Statistics. 

The LSI appears, recently, to be applied in a number of applications 
related with uncertainty and Statistical Information Theory [12]. We 
introduced LSI in a compact form and investigated some essentials, to our 
consideration in areas of application. More extensions can be obtained such 
as the Blachman-Stam inequality [14], while a number of nice theoretical 
results can be obtained [4], among others. Not only the theoretical insight is 
covered with the distribution introduced in Section 2, but it offers a model to 
approach the fat tailed distributions [16, Table 1 and 2]. As a continuation of 
our work, Table 1 above provides evidence that the Laplace transformation 
can be evaluated for all the real values of the shape parameter , but not 
within .1,0  

The Laplace transformation for the 2,N  distribution was 

introduced and related results were obtained. We are referring to Laplace 
transformation rather than the moment generating function as the Laplace 
transformation. We are planning the same to apply in our future work. 
Despite the fact that (21) might be considered complicated, still with 
MATLAB nice results can be obtained for the “fat-tailed distribution”, as can 
be considered and evaluated easily, with Table 1 providing the appropriate 
evidence. 
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