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Similarity Distance Learning on SPD Manifold for 

Writer Independent Offline Signature Verification 
 

Elias N. Zois, Dimitrios Tsourounis, and Dimitrios Kalivas 
 

Abstract— Identifying the existence or approval of a human in a 

number of past, recent and present day activities with the use of a 

handwritten signature is a captivating biometric challenge. 

Several engineering branches such as computer vision, pattern 

recognition and quite recently data-driven machine learning 

algorithms are combined in a multi-disciplined signature 

verification framework in order to deliver an equivalent and 

efficient e-assistance to manually executed duties, which usually 

demand knowledge and skills. In this work, we propose, for the 

first time, the use of a learnable Symmetric Positive Definite 

manifold distance framework in offline signature verification 

literature in order to build a global writer-independent signature 

verification classifier. The key building block of the framework 

relies on the use of regional covariance matrices of handwritten 

signature images as visual descriptors, which maps them into the 

Symmetric Positive Definite manifold. The learning and 

verification protocol explores both blind intra and blind inter 

transfer learning frameworks with the use of four popular 

signature datasets of Western and Asian origin. Experiments 

strongly indicate that the learnable SPD manifold similarity 

distance can be highly efficient for offline writer independent 

signature verification. 

 
Index Terms— Manifold Optimization, Symmetric Positive 

Definite Matrices, Spatial pyramid segmentation, Writer 

Independent Off-line Signature Verification.  

 

I. INTRODUCTION 

erhaps the most widespread handwritten attribute used, 

in order to express our endorsement or manifestation, is 

the handwritten signature. The authentication of the 

handwritten signature by means of computer engineering is a 

captivating e-society challenge [1], [2] with numerous 

testimonials to emphasize its use and importance. Automated 

signature verification (SV or ASV) is the engineering branch 

that provides technical advances and research areas in the 

fields of: the examination of Forensic Handwriting Documents 

[3], health, cybersecurity of private, public and/or government 

acts (e.g. verifying ballots in elections) [4], [5]. It is also an 

applied field for commercial and business solutions toward an 

number of applications ranging from essential economic 

transactions to mail ballots and therapeutic actions approval 
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[6], [7].  

The formation of the signature silhouette combines the 

learned scripting customs as well as the individual and specific 

brain motoric process [8]-[11] of a person. In case that the 

signature is drawn on a sheet of paper, its static counterpart is 

acquired with the use of a scanner while in the case of using 

an electronic device one could acquire, besides a digital 

image, a time indexed multivariable sequence. Earlier [12] as 

well as newly published research papers and reviews in SV 

[13], [14] initially categorize the SV methods either as 

dynamic-online (signal vs. time) [1], [11], [15]-[20] or as 

static-offline (image) [21]-[25]. Another categorization of SV 

methods classifies them into Writer Dependent (WD) or 

Independent (WI) according to the verification strategy 

followed [26]-[32]. The WD approach is the most frequently 

encountered in the literature in which a dedicated classifier is 

trained for each signatory with his/her reference samples [24], 

[33]-[36].  

A. Writer independent signature verification 

In a more challenging approach, the WI-SV protocols learn 

a universal classifier in order to discriminate between two 

types of distributions: a) the positive (𝜔+), expressed by the 

genuine-to-genuine (similar) pairs of a learning set of 

signatures and b) the negative (𝜔−), expressed by the genuine-

to-forgeries (dissimilar) pairs [27], [28], [37]-[39]. This is 

usually attained by employing the dichotomy transformation 

[40], in which the feature space 𝐹 ∈ ℝ𝐾, which contains any 

two signature pairs (𝐹𝑖, 𝐹𝑗), is transformed to a distance space 

|𝐹𝑖 − 𝐹𝑗| ∈ ℝ+
𝐾  denoted hereafter as the (dis)similarity distance 

space. Recently, WI verifiers have been proposed with a 

number of Deep learning methods like attention Siamese 

networks [41], inverse discriminative networks [42], static-

dynamic interaction networks [43], self-supervised attention-

guided reconstruction [44] and capsule neural networks [45] 

that do not necessary follow the dichotomy transform. 

Metric learning appears to be an attractive way for WI-SV 

research. In the literature one may find additional research 

efforts pointing mainly to deep metric learning. For example, 

Rantzsch et al. [46] proposed a comparison between triplets of 

two genuine and one forged signature, in order to embed 

signatures in a high-dimensional space, with Euclidean 

distance acting as the similarity measure. Soleimani et al. [38] 

combined the use of Histograms of Oriented Gradients 

(HOG), as signature descriptors, and a Deep Multitask Metric 

Learning (DMML) approach in order to learn a set of 

hierarchical nonlinear transformations with a deep neural 

network. Maergner et al. [47] proposed the combined usage of 

P 

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3333681

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of West Attica. Downloaded on December 01,2023 at 12:28:36 UTC from IEEE Xplore.  Restrictions apply. 

mailto:ezois@uniwa.gr
mailto:dtsourounis@upatras.gr


2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

a structural approach based on graph edit distance with a 

statistical approach based on deep triplet networks in order to 

address a keypoint graph-based dissimilarity computation. 

They also proposed the use of a graph edit distance in order to 

learn a convolutional neural network using a triplet loss 

function. Zhu et al. [48] proposed a point-to-set similarity 

based deep feature learning by dividing a training batch into a 

support set and a query set. Lai et al. [49] proposed an 

oriented feature extractor by combining a classification loss 

and a metric learning loss on a WD basis. Chattopadhyay et al. 

[44] proposed also a two-stage deep learning framework that 

leverages both self-supervised representation and metric 

learning. Liu et al. [50] proposed a Mutual Signature 

DenseNet (MSDN) to extract features and learn the similarity 

measure from local regions instead of whole signature images. 

Lin et al. [51] proposed a 2-Channel-2-Logit network whose 

output measures the dissimilarity between reference and query 

signatures and avoid overfitting. Hanif et al., [52] used a 

Mahalanobis metric learning approach on HOG and LBP 

descriptors computed at interest points. Ji et al. [53], proposed 

a paired contrastive transformation (PCF) of similar and 

dissimilar signature pairs with rejection and top-rank learning 

for highly reliable signature verification. 

B. Concerns regarding WI systems 

An issue that one should acknowledge at the WI-SV design 

and learning (i.e. training & validation) stages stems from the 

fact that the (𝜔−) pairs can be of different types. For example, 

a dissimilar pair can be formed by pairing a genuine sample of 

a person with a genuine sample of another person (i.e. 

Random forgeries), or ii) a genuine sample of a person with a 

simulated-or-skilled sample of the same person. For unbiased 

operation of any WI verifier, neither intra and inter class pairs 

that learn and validate the dissimilarity space should be 

independent, or blind, that is they must not be a part of the 

claimed identity. This type of independency allow us to utilize 

the 𝜔− class of genuine-to-forgeries pairs with diverse quality. 

Thus, the 𝜔− class can be formed by ratios of a) genuine-to-

random or b) genuine-to-skilled-simulated forgeries. 

Ideally, a SV system should be able to effectively cope 

with the fundamental question [54]: “Given a group of 

reference signatures, does a questioned signature belong to 

them?” Broadly, a low dimensional, efficient as well as 

descriptive visual representation of images was introduced in 

[55], with the utilization of the region covariance descriptors 

of image feature stacks (or maps). This representation 

introduced the principles of non-Euclidean geometry in 

computer vision algorithms with a notable representative 

among others, the symmetric positive definite (SPD) manifold 

space with numerous applications like fine-grained image 

classification [56],[57], generic/imageNet image classification 

[58], [59], action/video classification [60], [61], person re-

identification [62]-[64] domain adaptation [65], few-shot 

learning [66], meteorology [67], medical imaging [68], brain-

computer interface analysis [69], [70], etc.  

C. The proposed symmetric positive definite WI-SV system 

For the first time in the offline SV literature, a WD-SV 

SPD mapping of a signature with a corresponding region 

covariance matrix [35] was proposed recently. Therefore, we 

felt that it is reasonable to ask ourselves in what way we can 

explore a common ground between the region covariance/SPD 

matrices and the domain of WI-SV by employing an 

appropriate metric learning for establishing a similarity 

measure. We commence with the following facts: a) 

similarity-based algorithms are agnostic to the geometry of the 

feature space and mainly reside in the idea that they need only 

(dis)similarities of any (𝜔+, 𝜔−) pairs [57], b) SPD geometry 

does not have a Euclidean nature which often makes the 

design of SPD based classifiers quite challenging. Popular 

SPD based classification methods have to convert an SPD 

point into a Euclidean-style feature vector by means of tangent 

approximations [35], [71], [72], the kernel and/or the coding 

methods [73]-[75]. These methods, however, perturb the 

intrinsic matrix properties and might provide mediocre results, 

and c) manifold geometry is closely related to the notion of 

distance measure. Similarity between two SPD points can be 

measured with several mathematical entities like a) the affine-

invariant metric (AIM) [68], b) the log-Euclidean metric 

(LEM) [76], c) the Stein divergence [77], d) the Burg matrix 

divergence [78] and e) the alpha-beta divergence [79], [80]. 

Metric learning in the SPD manifold has also been proposed in 

order to model heterogeneous applications in which a distance 

measure from the data under examination [81] is transferred to 

the application domain. It has been reported [82] that there are 

three categories of SPD manifold metric learning methods. 

The first category comprises methods that learn a distance 

metric in the Euclidean tangent space. The second category 

consist of methods that learn the distance metric in the kernel 

space, usually in reproducing kernel Hilbert space (RKHS) 

[83] which generalizes the LEM between two SPD points and 

infinite-dimensional covariance matrices by Hilbert-Schmidt 

operators. The third category proposes to preserve the global 

SPD structure [81] by: a) projecting an initial high-

dimensional SPD point into another SPD one, typically with 

fewer dimensions and b) learn a corresponding metric. A local 

extension of the third category has been proposed in [57] in 

which a projected SPD point is partitioned in combinations of 

discovered visual information represented by local SPD 

matrices.  

A literature search reveals that, to the author’s best 

knowledge no prior work has been presented which models 

the handwritten signature with the use of SPD matrices and 

corresponding metric learning for WI-SV. The literature 

research provided in section I.A always imply an underlying 

Euclidian nature. This is an important issue because, 

frequently, machine learning algorithms assume that there is 

an underlying Euclidean nature of the input signature 

descriptor. But, up to now, no one has assumed that they are 

immersed into a non-Euclidean vector space. This geometrical 

constraint regarding the intrinsic structure of the signature 

descriptor may provide suboptimal results regarding the 
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verification efficiency. Our work contemplates the non-

Euclidean nature of the signature descriptors and introduce a 

SPD metric learning framework. The novelty characteristics of 

the proposed approach are: 

1. We address the WI-SV problem as a learnable SPD distance 

problem in which pairs of similar/dissimilar signatures are 

employed in its learning stage for the creation of a similarity 

distance between input pairs [84] rather than the original input 

space. Contrary to the design of a Euclidean learning model, 

the use of a non-Euclidean manifold makes the task of 

classification complicated as well as demanding. This is due to 

the fact that the SPD manifold is not a Euclidean vector space. 

2. We explore, for the first time in the for WI-SV literature, 

the SPD manifold geometry with a theoretical framework 

presented in [57]. The key idea is to map a set of initial SPD 

input points into another SPD manifold so that similar points 

in the original space are mapped together on the new manifold 

while dissimilar point are mapped apart [85]. For this purpose, 

(𝜔+, 𝜔−) SPD pairs are employed in order to learn a set of 

three parameters Θ = {𝑾,𝑨,𝐌} which represent a joint 

learning algorithm with a point-to-set transformation 𝑾, a set-

to-set distance measure 𝑨 and a merging factor 𝐌. 

The rest of the paper is organized as follows: Section II 

present the preliminaries of the proposed system architecture 

and introduces the necessary steps for the creation of the 

signature global covariance matrix. Section III reviews the 

elements and mathematical tools of the SPD Riemannian 

manifold. Section IV provides details regarding the proposed 

SPD distance learning method. Section V describes the 

experimental methods and provides the results. Finally, 

section VI provides the conclusion. 

II. PROPOSED SYSTEM & SIGNATURE COVARIANCE MATRIX 

Figure 1 illustrates conceptually a toy example of the proposed 

learning procedure. Section II.A describes the way that, 

handwritten signature images are converted to ℝ𝑛×𝑛 

covariance matrices. Now, let us denote the outcome of the 

SPD metric learning model with the similarity distance 

Δ(𝑾,𝑨,𝐌). This has the following learning parameters: a) a 

projection matrix 𝑾, which maps the initial covariance 

matrices to another covariance ∈ ℝ𝑚𝑝×𝑚𝑝 with mp≤n and at 

the same time selects m-numbered non-overlapping block-

diagonal covariance matrices ℝ𝑝×𝑝, b) the 𝑨 ∈ ℝ𝑚×2 set of 

learnable parameters which characterize each of the m-

numbered alpha-beta divergences 𝐷𝑖=1,…,𝑚, and c) the matrix 

𝐌 ∈ ℝ𝑚×𝑚 which weights and sum up any alpha-beta 

divergences. Following the completion of the learning stage, 

the testing stage uses the learned model with i) one questioned 

sample 𝑄 and ii) a reference population 𝒢 of 𝒢𝑁𝑅𝐸𝐹  samples, 

Δ𝑄
𝒢 (𝑾, 𝑨,𝐌). All these procedures will be elaborated further.  

A. Signature covariance matrix 

Let 𝐼 ∈ ℝ𝑤×ℎ be a digital image of w-columns and h-rows 

and 𝐹 ∈ ℝ𝑤×ℎ×𝑛 be a corresponding image stack with n image 

planes, evaluated from I with the use of a number of n-filters: 

𝐹(𝑥, 𝑦, 𝑖) = Φ𝑖(𝐼, 𝑥, 𝑦), 𝑖 = 1: 𝑛. The function Φ can be any 

type of a stack of mapping functions such as intensity, 

gradients, pixel locations, filter mappings, etc. Given a 

rectangular image region ℛ ⊂ 𝐹, let 𝒇 = [𝒇𝑖]𝑖=1,2,…𝑆 ∈ ℝ𝑛×𝑆 

be a local feature map of S total pixels that reside in ℛ. Then, 

the region ℛ is modelled by its region covariance matrix 𝑪ℛ ∈
ℝ𝑛×𝑛 of the 𝒇𝑖 ∈ ℝ𝑛 points which is evaluated as: 

𝑪ℛ =
1

𝑆−1
∑ (𝒇𝑖 − 𝝁)(𝒇𝑖 − 𝝁)𝛵𝑆
𝑖=1   (1) 

where 𝝁 ∈ ℝ𝑛 represents the column mean vector of the 𝒇𝑖 
points and 𝛵 denotes the transpose operator. For every 

signature image a sequence of typical image processing steps 

which involves: thresholding with Otsu’s method and 

thinning. The pruning level of thinning utilizes an automated 

algorithm originally proposed in [22]. For the addressed 

 
Fig. 1. Toy example of the proposed SPD metric learning framework. Similar (green dots) and dissimilar (red squares) pairs 

of signature images are converted into SPD matrices of 10×10 size. A joint optimization procedure (with parameter Θ =
𝐖,𝐀,𝐌), is represented by forward black and backpropagation blue arrows. i) Map the initial SPD space into another SPD 

space with the projection matrix W and at the same time select two (m=2, p=5) p×p block diagonal SPD matrices (green 

circles and red boxes), ii) For each new SPD space, the 𝐀 = (𝛼𝑘, 𝛽𝑘)𝑘=1
2  parameters of the local distances 𝐷(𝛼𝑘,𝛽𝑘)

𝑘  are learned 

and c) learn a weight matrix 𝐌 which merges the 𝐷𝐀
𝑘  into one score ∆(Θ, 𝑿𝒊, 𝑿𝒋). 
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offline SV problem we define the following mapping 

Φ𝑖(𝐼, 𝑥, 𝑦) of a raw signature image 𝐼𝑟𝑎𝑤(𝑥, 𝑦) as:  

[𝐼, 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑥𝑥 , 𝐼𝑥𝑦 , 𝐼𝑦𝑦 , √𝐼𝑥
2 + 𝐼𝑦

2, tan−1(𝐼𝑦 𝐼𝑥⁄ ) , 𝑥𝑛,𝑦𝑛,]  (2) 

in which, 𝐼 is the grayscale image after the preprocessing step, 

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑥𝑥 , 𝐼𝑥𝑦 , 𝐼𝑦𝑦  are image derivatives of 𝐼(𝑥, 𝑦), ,n nx y  are 

the signature pixel coordinates, normalized by their maximum 

number of rows and columns of the image bounding box and 

tan−1(𝐼𝑦 𝐼𝑥⁄ ) is the gradient direction, normalized into radians 

with range varying from [-π, π). The corresponding signature 

covariance matrix 𝑪𝑆𝐶𝑀 of 𝐼 is evaluated with eqs. (1)-(2) but 

under the constraint that only the pixels that are part of the 

signature trace of the preprocessing step contribute to the 

computation of 𝑪𝑆𝐶𝑀. Therefore, any signature image results 

in a 𝑪𝑆𝐶𝑀 ∈ ℝ10×10 point of the corresponding SPD manifold. 

The covariance matrix can be evaluated for different parts of 

the image; therefore for each signature image we evaluate its 

corresponding 𝑪𝑆𝐶𝑀 not only for the global image 𝑪𝑆𝐶𝑀
1×1 , but 

also for a spatial pyramid segmentation scenario which 

provides also four 𝑪𝑆𝐶𝑀
2×2 , and nine 𝑪𝑆𝐶𝑀

3×3  covariance matrices of 

the equi-mass sub-regions [22].  

IΙI. THE SYMMETRIC POSITIVE DEFINITE MANIFOLD 

Unless otherwise specified, from now on, vectors are 

labeled by bold lowercase letters (e.g. x) while bold capital 

letters (e.g. X) denote matrices. Also, 𝑰𝑛 is the 𝑛 × 𝑛 identity 

matrix, 𝐺𝐿(𝑛) denotes the space of the real invertible 𝑛 × 𝑛 

matrices, and S𝑦𝑚(𝑛) is the space of real 𝑛 × 𝑛 symmetric 

matrices. The 𝑆++
𝑛  denotes the SPD manifold, properly defined 

in the following paragraphs. Finally, 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … 𝜆𝑛) is a 

diagonal matrix whose elements are the real values {𝜆𝜇}𝜇=1
𝑛

.  

A. The Riemannian Manifold of SPD Matrices 

According to the terminology found in [35] and some 

seminal references [57], [81], [86], let us define a topological 

manifold (or manifold) as a topological space that is locally 

homomorphic to the n-dimensional Euclidean space ℝ𝑛. A 

differentiable manifold is a manifold equipped with a globally 

defined differential structure which allows to define the 

derivatives of curves on the manifold. The derivatives at any 

point X on the manifold lie in the tangent space 𝑇𝑿 of X, 

which is a vector space expressed by symmetric matrices. A 

Riemannian manifold ℳ [68] is a differentiable manifold 

equipped with a smoothly varying inner product 〈, 〉𝑿∈ℳ. This 

is also defined as the Riemannian metric (or norm) of a 

tangent vector 𝒀 ∈ 𝑇𝑿 such that ‖𝒀‖𝑿
2 = 〈𝒀, 𝒀〉𝑿∈ℳ. Given a 

point 𝑿 ∈ ℳ and a tangent vector 𝒀 ∈ 𝑇𝑿 a unique geodesic 

curve 𝚪(𝑡) exists with 𝚪(0) = 𝑿 and �̇�(𝑡) = 𝒀. In addition, 

the Riemannian exponential map 𝑒𝑥𝑝𝑿∈ℳ: 𝑇𝑿 →ℳ is defined 

by 𝑒𝑥𝑝𝑿∈ℳ(𝒀) = 𝚪(1). In this work, we consider only 

Riemannian manifolds which a) verify the identity 𝑑(𝑿 ∈

ℳ, 𝑒𝑥𝑝𝑿∈ℳ(𝒀)) = ‖𝒀‖𝑿∈ℳ and b) have a well-defined 

logarithm map: 𝑙𝑜𝑔𝑿∈ℳ = 𝑒𝑥𝑝𝑿
−1: ℳ → 𝑇𝑿. Then, the 

following relation 𝑑(𝑿 ∈ ℳ,𝒀 ∈ ℳ) = ‖𝑙𝑜𝑔𝑿(𝒀)‖𝑿 holds, 

which ensures both the existence and a closed-form expression 

for any the distance between the manifold points 𝑿, 𝒀 ∈ ℳ. 

The SPD manifold 𝑃𝑛 ≡ 𝑆++
𝑛  is the space of all 𝑛 × 𝑛 real 

matrices Z which are symmetric 𝒁𝑻 − 𝒁 = 𝟎 and strictly 

positive definite: 𝒗𝑻𝒁𝒗 > 𝟎, ∀𝒗 ∈ ℝ𝑛 − 𝟎𝑛 i.e. the ℝ𝑛 space 

with the exclusion of the zero origin. Intuitively, the points 

that belong to the SPD manifold lie in the interior of a convex 

cone in a 𝑛(𝑛 + 1) 2⁄ -dimensional Euclidean space. Given an 

SPD matrix 𝑿 ∈ 𝑃𝑛, its associated matrix exponential and 

logarithm functions have the following mathematical 

expressions:  

𝑒𝑥𝑝𝑚(𝑿) = 𝑼𝑑𝑖𝑎𝑔(exp(𝜆𝜇))𝑼
𝑇    (3) 

𝑙𝑜𝑔𝑚(𝑿) = 𝑼𝑑𝑖𝑎𝑔(log(𝜆𝜇))𝑼
𝑇   (4) 

In the above equations, 𝜆𝜇 is the 𝜇-th eigenvalue derived from 

the eigenvalue analysis of 𝑿 = 𝑼𝑑𝑖𝑎𝑔(𝜆𝜇)𝑼
𝑇 .  

B. Geometric Perspective of SPD manifolds 

The geometry of an SPD manifold is frequently formed 

with the use of the related Affine Invariant Riemannian Metric 

(AIRM) defined for 𝑿 ∈ 𝑃𝑛 and 𝒀,𝑾 ∈ 𝑇𝑃𝑛 as [68]:  

〈𝒀,𝑾〉𝑿 ≜ 〈𝑿−  ⁄ 𝒀𝑿−  ⁄ , 𝑿−  ⁄ 𝑾𝑿−  ⁄ 〉 
= 𝑇𝑟(𝑿− 𝒀𝑿− 𝑾)            (3) 

which induces the notion of a distance, formally termed 

geodesic distance, between the manifold points 𝑿, 𝒁 ∈ 𝑃𝑛 as: 

𝛿𝑅(𝑿, 𝒁) = ‖𝑿−  ⁄ 𝒁𝑿−  ⁄ ‖
𝐹

  (4) 

Another, SPD matrix metric has been proposed in [76] 

formally termed as Log-Euclidean-Metric (LEM) which 

projects the 𝑿, 𝒁 ∈ 𝑃𝑛 points onto the common pole tangent 

space 𝑇𝑰𝑛×𝑛 with: 

𝐷𝐿𝐸𝑀(𝑿, 𝒁) = ‖𝑙𝑜𝑔𝑚(𝑿) − 𝑙𝑜𝑔𝑚(𝒁)‖𝐹  (5) 

Several other measures for matrix (dis)similarity have been 

also proposed, such as the Stein, Jeffrey Kullback-Leibler and 

Burg matrix divergences [57]. A proposed approach for 

measuring distances in the 𝑆++
𝑛  is the learnable alpha-beta 

divergence [87] which was found to be adaptive under any 

underlying distribution. Therefore, for the 𝑿, 𝒁 ∈ 𝑃𝑛 the alpha-

beta divergence is defined according to:  

𝐷(𝛼,𝛽)(𝑿‖𝒁) =
1

𝛼𝛽
log (det (

𝛼(𝑿𝒁−1)𝛽 + 𝛽(𝑿𝒁−1)−𝛼

𝛼 + 𝛽
)) 

1

𝛼𝛽
∑ log (

𝛼(𝜆𝜇)
𝛽 + 𝛽(𝜆𝜇)

−𝛼

𝛼 + 𝛽
)

𝑛

𝜇=1

                (6) 

with 𝛼 ≠ 0, 𝛽 ≠ 0 and 𝛼 + 𝛽 ≠ 0. The pair (𝛼, 𝛽) represents 

the learnable parameters of the divergence while det(⋅) is the 

determinant and 𝜆𝜇 is the 𝜇-th eigenvalue of the product 

𝑿𝒁− . With respect to the (𝛼, 𝛽) parameters, eq.(6) is 

considered to be smooth and several SPD distances can be 

expressed with specific (𝛼, 𝛽) value assignments [79]. 

Furthermore, it has an invariance property under any affine 

transformation i.e. for any real and invertible matrix 𝑩 ∈

𝐺𝐿(𝑛), we have 𝐷(𝛼,𝛽)(𝑿‖𝒁) = 𝐷(𝛼,𝛽)(𝑩𝑇𝑿𝑩‖𝑩𝑇𝒁𝑩) [57].  

IV. THE PROPOSED SPD WI-SV SIMILARITY DISTANCE 

This section provides the necessary theory as well the 

algorithmic steps for the proposed WI-SV (dis)similarity 

distance. As a prelude, we state that the proposed objective 

target is to create a modular SPD distance model ∆(Θ) 
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parametrized by the set of parameters Θ = {𝑾,𝑨,𝐌}. 
Following a learnable mapping 𝑾 from the original SPD 

manifold 𝑃𝑛 to another SPD manifold 𝑃𝑚⋅𝑝, the model ∆(Θ) 

explores, with the help of 𝑨 and 𝐌 parameters, diverse visual 

information which is stored in the 𝑚 −individual block 

diagonal matrices ∈ ℝ𝑝×𝑝. We begin the analysis by getting 

familiarized with the mathematical formulation of the 

problem, initially introduced in [57]. To this end, let us declare 

a loss function ℒ(Θ, S, D, Y) in which S, D, Y are the set of 

similar and dissimilar signature pairs, along with their 

corresponding set labels 𝑦𝑖𝑗=1 for 𝑿𝒊 similar to 𝑿𝒋 and 𝑦𝑖𝑗=0 

otherwise. Some useful mathematical notations follows also: 

i. The projection  𝑾(⋅): it maps any initial signature 

covariance matrix 𝑪𝑆𝐶𝑀 ≡ 𝑿𝒊 ∈ 𝑃𝑛 in a new, covariance 

matrix 𝒁𝒊 ∈ 𝑃𝑚⋅𝑝, 𝑚 ⋅ 𝑝 ≤ 𝑛 by learning a orthogonal 

projection matrix 𝑾.  

ii. The point-to-set transformation 𝑇𝑆(⋅): it partitions the 

result of  𝑾(⋅) in a set 𝒳𝑖  of 𝑚, non-overlapping block 

diagonal SPD matrices {𝒁𝑖
𝑘}𝑘=1

𝑚 ∈ 𝑃𝑝. Both (i) and (ii) steps 

formulate in a notation {𝒁𝑖
𝑘} = { 𝑾

𝑘(𝑿𝒊)}𝑘=1
𝑚  which describes 

the derived set of 𝑚-numbered SPD matrices. 

iii. The set of sub-distances 𝐷𝑨(⋅,⋅): it is a measure between 

corresponding pairs 𝒁𝑖
𝑘 , 𝒁𝑗

𝑘 for each 𝑚-numbered SPD 

manifold returned by steps (i), (ii). The learnable parameter 

𝑨 ∈ ℝ𝑚×2 comprises of the (𝛼𝑘, 𝛽𝑘)𝑘=1
𝑚  parameters for each 

𝑚-numbered SPD manifold. Fig. 1 again presents a toy 

example, in which the initial SPD signature covariance 

matrices 𝑿𝒊, 𝑿𝒋  ∈ 𝑃𝑛, then, for the parameters m=2 and p=5, 

then we learn the set (𝛼𝑘 , 𝛽𝑘)𝑘=1,2:  𝐷(𝛼 ,𝛽 )
1 ( 𝑾

1 (𝑿𝒊),  𝑾
1(𝑿𝒋)) 

and  𝐷(𝛼 ,𝛽 )
2 ( 𝑾

2(𝑿𝒊),  𝑾
2(𝑿𝒋)). 

iv. The integration function 𝐻𝑴(⋅): it combines the 𝑚-

numbered {𝐷(𝛼𝑘,𝛽𝑘)
𝑘 }

𝑘=1

𝑚
 sub-distances into one with the use of 

the learnable 𝑴 parameter. 

v. The set-to-set distance 𝐷𝑠2𝑠(⋅,⋅): computes the final 

distance between two SPD sets by combining the 𝐷(𝛼𝑘,𝛽𝑘)
𝑘  with 

the use of the integration function 𝐻𝑴(⋅).  
To proceed, let us consider a pair of 𝑿𝒊 and 𝑿𝒋 SPD points. 

At first, we use steps (i), (ii), which results in a set of 𝑚-

numbered low dimensional SPD sub-matrices { 𝑾
𝑘(⋅)}𝑘=1

𝑚  i.e. 

the 𝑿𝒊, 𝑿𝒋 points are assigned to their equivalent sets: 𝒳𝑖 =

𝑇𝑆(𝑿𝒊) = { 𝑾
𝑘(𝑿𝒊)}𝑘=1

𝑚 and 𝒳𝑗 = 𝑇𝑆(𝑿𝒋) = { 𝑾
𝑘(𝑿𝒋)}𝑘=1

𝑚 . Now, 

rather than using only one distance 𝛿𝑅(𝑿𝒊, 𝑿𝒋) or 

𝐷𝐿𝐸𝑀(𝑿𝒊, 𝑿𝒋) between the original 𝑿𝒊, 𝑿𝒋 SPD points we 

propose to learn a family of 𝑚-numbered alpha-beta 

divergences 𝐷𝐴
𝑘 ( 𝑊

𝑘(𝑿𝒊),  𝑊
𝑘(𝑿𝒋))

𝑘=1

𝑚

. Next, the set-to-set 

distance 𝐷𝑠2𝑠(𝒳𝑖 , 𝒳𝑗) = 𝐷𝑠2𝑠({ 𝑊
𝑘(𝑿𝒊)}𝑘=1

𝑚 , { 𝑊
𝑘(𝑿𝒋)}𝑘=1

𝑚 ) will 

weight the 𝑚–individual instances of {𝐷𝑨
𝑘(⋅,⋅)}𝑘=1

𝑚   into one 

∆(Θ) with the use of the 𝐻𝑴(⋅) integration function. The 

proposed WI-SV method is elaborated below by declaring the 

point-to-point distance 𝐷Θ(⋅,⋅) on 𝑃𝑛 as a set-to-set distance 

𝐷𝑠2𝑠(⋅,⋅):  

∆(Θ, 𝑿𝒊, 𝑿𝒋) =  𝐷𝑠2𝑠 ( 𝑇𝑆(𝑿𝒊),  𝑇𝑆(𝑿𝒋)) =  𝐷𝑠2𝑠(𝒳𝑖 , 𝒳𝑗) 

= 𝐷𝑠2𝑠({ 𝑊
𝑘(𝑿𝒊)}𝑘=1

𝑚 , { 𝑊
𝑘(𝑿𝒋)}𝑘=1

𝑚 ) 

= 𝐻𝑴 (𝐷𝐴
1 ( 𝑊

1 (𝑿𝒊),  𝑊
1 (𝑿𝒋)) , … ,𝐷𝐴

𝑚 ( 𝑊
𝑚(𝑿𝒊),  𝑊

𝑚(𝑿𝒋))) (7) 

In order to build the learning protocol, the analytical 

parametric form of the objective contrastive loss function 

ℒ(Θ, S, D, Y) is:  

ℒ(Θ, S, D, Y) =
1

|𝑆|
∑ 𝑦𝑖𝑗 ⋅ max(𝐷

Θ(𝑿𝒊, 𝑿𝒋) − 𝜁𝑆 , 0)
2

𝑖,𝑗∈𝑆

 

+
1

|𝐷|
∑ (1 − 𝑦𝑖𝑗) ⋅ max(𝜁𝐷 − 𝐷Θ(𝑿𝒊, 𝑿𝒋), 0)

2

𝑖,𝑗∈𝐷

+ 𝜉 ⋅ 𝛾(𝑴) 

𝑠. 𝑡.𝑴 ∈ 𝑆++
𝑚  ,𝑾 ∈ 𝑆𝑡(𝑚𝑝, 𝑛)           (8) 

where |𝑆| and |𝐷| are the cardinality number of the similar 𝜔+ 

and dissimilar 𝜔− SPD signature covariance pairs. The 

intuition behind eq.(8) is that the distance between two similar 

signature covariance matrices should be smaller than a 

threshold 𝜁𝑆 while the distance between two dissimilar 

signature covariance matrices should be larger than 𝜁𝐷. In the 

above formulation, we impose a) the learnable matrix 𝑾 ∈
𝑆𝑡(𝑚𝑝, 𝑛) with an orthogonality constraint (or belonging to 

the Stiefel manifold [88]) and b) the learnable matrix 𝑴 ∈ 𝑆++
𝑚  

with a SPD constraint, in order to provide a robust distance 

measure. The regularization term of the loss function in (8) is 

implemented by the Burgman matrix divergence [78] between 

𝑴 and a prior matrix 𝑴0 i.e. 𝛾(𝑴) = 𝑡𝑟(𝑴𝑴0
−1) −

𝑙𝑜𝑔𝑑𝑒𝑡(𝑴𝑴0
−1) − 𝑚. The manifold nature of the learnable 

constraints 𝑾 and 𝑴 clearly suggests that Riemannian 

optimization methods can be applied. In the subsequent 

section, we discuss, in more detail, the implementation of the 

point-to-set and the set-to-set distances.  

A. Point-to-Set Transformation  

The proposed point-to-set transformation maps any 

original manifold points 𝑿𝒊 ∈ ℝ𝑛×𝑛 to 𝑚-numbered individual 

manifolds 𝑿𝑖
1…𝑚 ∈ ℝ𝑝×𝑝:  

𝑿𝑖
1 =  𝑾

1 (𝑿𝑖) = 𝑾1
𝑇𝑿𝑖𝑾1, . . , 𝑿𝑖

𝑚 =  𝑾
𝑚(𝑿𝑖) = 𝑾𝑚

𝑇 𝑿𝑖𝑾𝑚 (9) 

with 𝑾𝑘 ∈ ℝ𝑛×𝑝 to be the k-th mapping kernel in one low-

dimensional SPD matrix 𝑿𝑖
𝑘 ∈ ℝ𝑝×𝑝. We hypothesize that 

each one of the new 𝑿𝑖
𝑘 matrices can also provide 

discriminative visual information. Following, an SPD set 𝒳𝑖  is 

formed by assembling the set of {𝑿𝑖
𝑘}𝑘=1

𝑚 = { 𝑊
𝑘(𝑿𝒊)}𝑘=1

𝑚  SPD 

matrices. Each of the 𝑾𝑘 matrices must be full-column rank 

in order to ensure that the derived 𝑿𝑖
𝑘 matrices are SPD. 

Evidence is provided that this is achieved by imposing 𝑾𝑘 on 

the subsequent orthogonality constraint: 𝑾𝑘
𝑇𝑾𝑙≠𝑘 = 𝟎 ∈

ℝ𝑝×𝑝. We begin our analysis  by referring to a theorem which 

states that: given two matrices 𝑿, 𝒁 ∈ 𝑃𝑛 and a projection 

matrix 𝑾 ∈ ℝ𝑛×𝑝, 𝑝 ≤ 𝑛, the objective function 

ℒ (𝐷(𝛼,𝛽)(𝑾
𝑻𝑿𝑾‖𝑾𝑻𝒁𝑾)) can be optimized without loss 

of generality if we impose the orthogonality constraint [57]. 

Any 𝐷(𝛼𝑘,𝛽𝑘)
𝑘  is equipped with the affine invariance property, 

that is, for an 𝑹 ∈ 𝐺𝐿(𝑝) orthogonal matrix we have: 

𝐷(𝛼𝑘,𝛽𝑘)
𝑘 (𝑾𝑘

𝑇𝑿𝑾𝑘‖𝑾𝑘
𝑇𝒁𝑾𝑘) = 𝐷(𝛼𝑘,𝛽𝑘)

𝑘 (𝑹𝑻𝑾𝑘
𝑇𝑿𝑾𝑘𝑹‖𝑹

𝑻𝑾𝑘
𝑇𝒁𝑾𝑘𝑹), 

which results in the invariance of the objective function under 

the right action of any 𝑾𝑘 orthogonal matrix. Therefore, the 

𝑾𝑘 lies in a Grassman manifold [88]. To continue, if 𝑾𝑘 and 

𝑾𝑙≠𝑘 belong to the Grassman manifold, then it is known that 
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the projection distance between them is provided by the 

relation 𝑝 − ‖𝑾𝑘
𝑇𝑾𝑙‖𝐹. Thus, the projection distance is 

maximized when the orthogonality constraint: 𝑾𝑘
𝑇𝑾𝑙≠𝑘 =

𝟎 ∈ ℝ𝑝×𝑝 is applied; as a consequence, we expect to derive as 

much as possible discriminative visual information from the 

individuals 𝑾𝑘 and 𝑾𝑙≠𝑘. An efficient way to compute the 𝑿𝑖
𝑘 

is by observing that the set of {𝑾𝑘 ∈ ℝ𝑛×𝑝}𝑘=1
𝑚  matrices 

generates a total projection matrix 𝑾 = [𝑾1,𝑾2, … ,𝑾𝑚] ∈
ℝ𝑛×𝑚𝑝. For an original signature covariance matrix 𝑿𝒊 ∈ 𝑃𝑛 

we can apply a diagonal block binary mask on the matrix 

𝑾𝑻𝑿𝒊𝑾 as: 

 𝒁𝒊 = 𝑚𝑎𝑠𝑘(𝑾𝑻𝑿𝒊𝑾) 

    = 𝑚𝑎𝑠𝑘 ([
𝑾1

𝑇𝑿𝒊𝑾1 ⋯ 𝑾1
𝑇𝑿𝒊𝑾𝑚

⋮ ⋮ ⋮
𝑾𝑚

𝑇 𝑿𝒊𝑾1 ⋯ 𝑾𝑚
𝑇 𝑿𝒊𝑾𝑚

])                   (10) 

      = [

𝑿𝒊
 ⋯ 0

⋮ 𝑿𝒊
 ⋮

0 ⋯ 𝑿𝒊
𝒎

]  

in order to obtain a corresponding diagonal block matrix 𝒁𝒊 ∈
𝑃𝑚𝑝 which is equivalent to the SPD set 𝒳𝑖 . The advantages of 

this form are a) the efficient use of the eigen-decomposition 

and matrix inversion algorithms as well as b) the diagonal 

form of 𝒁𝒊 which elaborates our analysis and focuses on the 

essential visual information.  

B. Set-to-Set Distance 

Following the definition and the implementation details of 

the point-to-set transformation, we now provide details 

regarding the implementation of the set-to-set distance and its 

relation to the 𝐻𝑴(⋅) integration function. Specifically, we 

express the 𝐷𝑠2𝑠(⋅,⋅) as the learnable combination function 𝐻𝑴 

of the family of local alpha-beta divergences {𝐷𝑨
𝑘(⋅,⋅)}𝑘=1

𝑚 , 

with 𝑨 ∈ ℝ𝑚×2 the set of learnable parameters {(𝛼𝑘 , 𝛽𝑘)}𝑘=1
𝜇

. 

For any arbitrary k-th low dimensional manifold and one pair 

of locally projected SPD points {𝑿𝑖
𝑘 , 𝑿𝑗

𝑘} the 𝐷𝑨
𝑘(𝑿𝑖

𝑘 , 𝑿𝑗
𝑘) is 

expressed by:  

𝑑𝑖𝑗
𝑘 = 𝐷𝑨

𝑘(𝑿𝑖
𝑘 , 𝑿𝑗

𝑘) = 𝐷(𝛼𝑘,𝛽𝑘)
𝑘 (𝑿𝑖

𝑘‖𝑿𝑗
𝑘)   (11) 

=
1

𝛼𝑘 ⋅ 𝛽𝑘
∑𝑙𝑜𝑔 (

𝛼𝑘(𝜆𝑖𝑗𝑢
𝑘 )𝛽𝑘 + 𝛽𝑘(𝜆𝑖𝑗𝑢

𝑘 )−𝛼𝑘

𝛼𝑘 + 𝛽𝑘
)

𝑝

𝑢=1

 

in which, 𝜆𝑖𝑗𝑢
𝑘  is the u-th eigenvalue of the matrix 𝑿𝑖

𝑘(𝑿𝑗
𝑘)− . 

As a result, the 𝐷𝑠2𝑠(𝒳𝑖 , 𝒳𝑗) provide a vector comprised of 

any local distances 𝒅𝑖𝑗 = [𝑑𝑖𝑗
1 , … 𝑑𝑖𝑗

𝑚] ∈ ℝ𝑚 . Given the fact 

that these contribute to the final 𝐷𝑠2𝑠(⋅,⋅) we elaborate the 

point-to-point distance of eq. (7) as to its final form: 

∆(Θ,𝑿𝒊, 𝑿𝒋) = 𝐷𝑠2𝑠(𝒳𝑖 , 𝒳𝑗) = 𝐻𝑴([𝑑𝑖𝑗
1 , … 𝑑𝑖𝑗

𝑚])= 𝒅𝑖𝑗
𝑇𝑴𝒅𝑖𝑗 

=∑∑(𝑑𝑖𝑗
𝑘𝑀𝑘𝑙𝑑𝑖𝑗

𝑙 )

𝑚

𝑙=1

𝑚

𝑘=1

                                   (12) 

where 𝑴 is the learnable integration parameter and 𝑀𝑘𝑙 is the 

corresponding k-row and l-column element of 𝑴. A physical 

interpretation of 𝑀𝑘𝑙 is that it provides a measure of any 

potential influence of the locally mapped visual information 

between 𝑿𝒊, 𝑿𝒋 along with their correlation. An examination of 

the relation (12) reveals the following: a) if 𝑿𝒊 = 𝑿𝒋 then 

∆(Θ,𝑿𝒊, 𝑿𝒋) = 0, b) if 𝑿𝒊 ≠ 𝑿𝒋 then due to their SPD nature, 

they have positive eigenvalues; therefore 𝒅𝑖𝑗 ∈ ℝ+
𝑚 and the 

corresponding ∆(Θ, 𝑿𝒊, 𝑿𝒋) is positive. The above observations 

result in the profound constraint of the learnable parameter 𝑴 

to the SPD manifold 𝑃𝑚. An exploration of the resemblance 

between the well-known Mahalanobis distance and the 

proposed mathematical framework with the use of ∆(Θ) 
indicates that the projected local manifolds and the 

corresponding block-diagonal PSD matrices can be regarded 

as an intuitive generalization of the Euclidean vectors which 

comprise the Mahalanobis distance. 

C. Learning Protocol and Optimization Algorithm 

This section links the mathematical model of the proposed 

SPD distance ∆(Θ) with the proposed WI-SV framework. The 

learning procedure, as formulated in eq. (8), commences by 

setting the hyper-parameters 𝜉, 𝜁𝑆 and 𝜁𝐷 to fixed values. 

Then, iteratively the algorithm updates the learnable 

parameters Θ = {𝐖,𝐀,𝐌} by using a mini-batch of similar 

(𝑿𝒊, 𝑿𝒋)𝑆
 and dissimilar (𝑿𝒊, 𝑿𝒋)𝐷

 pairs in order to optimize 

the objective loss function ℒ(Θ). Assembling the mini-batch is 

discussed here by assuming a template signature dataset 𝒟 

comprised by a total of ℕ𝒟 writers. Each writer is represented 

by his/her positive and negative classes (Ω+), (Ω−) with ℕΩ+ 

genuine and ℕΩ−  simulated (or skilled forgery) signature 

samples. All signature samples are converted to corresponding 

covariance matrices according to the material exposed in 

section II.A.  

A development subset 𝕃𝔻𝕎 of total ℕ𝔻𝕎 writers is 

randomly selected for the learning stage of the proposed SPD 

distance ∆(Θ) while the remaining ℕ𝕋𝕤 writers are employed 

in the testing stage 𝕋𝕤. The development set is comprised by 

the training set 𝕋ℝ and the validation set 𝕍. The training set 

𝕋ℝ = {𝕋ℝ+, 𝕋ℝ−} is being built as follows: For each one of 

the ℕ𝔻𝕎 writers, seventy percent of the ℕΩ+  genuine 

signatures, denoted now as ℕω+ = 0.7ℕΩ+  are selected. Then, 

similar covariance pairs (𝑿𝒊, 𝑿𝒋)𝑆
 are formed in order to create 

the corresponding set 𝜔𝕋ℝ+  with its cardinality |𝑆| equals to a 

theoretical total of ℕ𝔻𝕎 × (#training-pairs/writer). According 

to the discussion exposed in section I.B., the dissimilar 

genuine-forgery pairs (𝑿𝒊, 𝑿𝒋)𝐷
 which form the 𝜔𝕋ℝ− set can 

be of different types. Therefore, we explore two distinct setups 

for the formation of the second half of the (𝑿𝒊, 𝑿𝒋)𝐷
 pair. In 

the first setup named as 𝜔100%𝑅𝐹
𝕋ℝ− , we use exclusive random 

forgeries for pairing with genuine samples. In the second one, 

defined as 𝜔0%𝑅𝐹
𝕋ℝ−  only skilled forgeries shall be utilized. For 

this purpose, we also select a number of seventy percent 

ℕω− = 0.7ℕΩ− for the negative class training stage. Whenever 

possible, the cardinality number |𝐷| of the dissimilar set 𝜔𝕋ℝ−  

has also been set equal to |𝑆|. The aforementioned elements 

are displayed in a tabulated form in Table I for a total of the 

four datasets that were used. Additional details regarding the 

datasets will be provided later. 
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TABLE I 

LEARNING PARAMETERS FOR THE SIGNATURE DATASETS 

 

Notation Description 𝓓𝟏 𝓓𝟐 𝓓𝟑 𝓓𝟒 

ℕ𝒟 # Writers 55 75 100 160 

ℕΩ+ , ℕΩ−  

# Genuine & # Simulated-

skilled forgery samples per 

writer 

24/24 15/16 24/30 

ℕ𝔻𝕎,ℕ𝕋𝕤
 

# Development & # Testing 

writers 
28/27 38/37 50/50 80/80 

ℕω+ 
# Samples per writer  

for the 𝕋ℝ: 
17 11 17 

𝜔𝕋ℝ+ &  𝑆  
𝕋ℝ+: Set of similar 

covariance pairs & 

corresponding cardinality 
3808 2090 6800 10880 

𝜔100%𝑅𝐹
𝕋ℝ−  &  𝐷  𝕋ℝ−: Set of dissimilar 

covariance pairs & 

corresponding cardinality 𝜔0%𝑅𝐹
𝕋ℝ−  &  𝐷  

 

As anticipated, the optimization procedure of the objective 

loss function is a non-jointly convex function of its learning 

parameters. We also note here that the learnable parameters 

𝐖,𝐌 lie in the Grassman and SPD manifolds respectively, 

which makes the overall optimization of the loss function a 

challenging problem. The Θ set parameters are optimized by 

the stochastic gradient descent (SGD) algorithm. Given 𝑨 ∈

ℝ𝑚×2, its update stage will rely on the Euclidean gradient 
𝜕ℒ

𝜕𝑨
 

while the Riemannian constraints of 𝐖,𝐌 impose the use of 

Riemannian gradients 
𝜕ℒ

𝜕𝑾𝑅 and 
𝜕ℒ

𝜕𝑴𝑅 [89]. Algorithm 1, 

provides a description of the optimization steps. In steps (6b) 

and (7b), the retraction operators of 𝑞(𝐖) and 𝑒𝑥𝑝𝑚(⋅) are 

defined by a) the 𝐐-part of the QR decomposition of 𝐖, i.e. 

𝐖 = 𝐐𝐑 and b) the matrix exponential function of (3). The 

interested reader may find analytical details regarding the 

implementation of a) the gradients of the ℒ(Θ) with respect to 

the individuals 𝑨𝑡 = (𝛼𝑘, 𝛽𝑘)𝑡, (𝐖𝑘)𝑡 (with 𝑘 = 1,…𝑚), 𝐌𝑡 

and 𝜕𝛾(𝑴,𝑴𝟎) 𝜕𝑴⁄  at time step 𝑡, and b) the properties of the 

convergence of the procedure at the SPD and Grassman 

manifolds in pivotal references such as [57], [89], [90]. In all 

baseline experiments, 𝜉 was set to 0.01 and the prior matrix 

𝑴0 was set to 𝑰𝑚. Additionally, in all our datasets, the 

thresholds 𝜁𝑆 and 𝜁𝐷 were set to 0.5 and 20, the learning rate 𝜂 

was set to 10−3 and the size of the mini-batch was set to 400 

i.e. 200 similar and 200 dissimilar pairs. When the iteration 

step 𝑡 equals an integer multiple of a fixed epoch value (e.g. 

epoch=200), the validation set 𝕍 is employed with a stopping 

condition in order to select and return the optimal ∆(Θ). The 

set 𝕍 is comprised by the remaining ℕω±
𝕍 = 0.3ℕΩ± 

associated signature covariance matrices. Algorithm 2 

provides a description of the validation steps. 

V. EXPERIMENTS 

A. The datasets 

Four popular offline handwritten signature datasets 𝒟1−4 of 

western and Indo-Aryan origin were employed in order to 

evaluate the proposed WI-SV SPD distance model. They are: 

the Western styled a) 𝒟1=CEDAR [91], b) the 𝒟2=MCYT-75 

[92] and the Asian oriented c) 𝒟3=BENGALI and d) 

𝒟4=HINDI, which are the two sub-sets of the Indo-Aryan 

BHSig260 database [93]. Table I, provides any essential 

information regarding the four datasets.  

B. Protocol 

The proposed WI-SV was explored with two key 

experimental blind frameworks, denoted as ℱ𝑖𝑛𝑡𝑟𝑎 and ℱ𝑖𝑛𝑡𝑒𝑟 . 

The ℱ𝑖𝑛𝑡𝑟𝑎 follows a typical 5 × 2 blind fold for each 

individual dataset. In detail, for each 𝒟𝑖 and according to the 

protocol described for the template dataset in section IV.c, we 

alternate the role of the learning (i.e. training & validation) 

and testing datasets 𝕃𝔻𝕎 and 𝕋𝕤. Specifically, in each one of 

the five folds, the proposed distance ∆(Θ, 𝕃𝔻𝕎) is learned with 

the 𝕃𝔻𝕎 while its efficiency is evaluated at 𝕋𝕤 and then, the 

𝕃𝔻𝕎 and 𝕋𝕤 exchange roles. The second blind ℱ𝑖𝑛𝑡𝑒𝑟  bear a 

resemblance to a transfer learning protocol which utilizes 

blind datasets for learning and testing. In detail, the proposed 

distance ∆(Θ,𝒟𝑖) is learned in the entire dataset 𝒟𝑖 with 

ℕ𝔻𝕎 = ℕ𝒟𝑖
 and then, it is evaluated in the remaining three 

datasets 𝒟𝑗≠𝑖. 

Algorithm 1: Learn the parameters Θ = {𝐖,𝐀,𝐌} of the ∆ Θ  SPD distance. 

Require: A mini-batch of similar  𝑿𝒊,𝑿𝒋 𝑆
 and dissimilar  𝑿𝒊,𝑿𝒋 𝐷

 pairs, the loss 

function ℒ Θ, S, D, Y  of (8). 

BEGIN 

1:  SET: Learnable parameters 𝐖𝟎,𝑨0,𝐌𝟎 to arbitrary values.  

2:  SET: Iteration 𝑡𝑠𝑡𝑜𝑝  parameter, learning rate η, validation trigger epoch.  

3:  FOR 𝑡 = 1: 𝑡𝑠𝑡𝑜𝑝    

4: EVALUATE: Loss function ℒ Θ, S, D, Y  (8) 

5:  UPDATE the parameter 𝑨 with: 𝑨𝑡 = 𝑨𝑡−1 − η 
𝜕ℒ

𝜕𝑨𝑡−1
   (13) 

6: UPDATE the 𝐖𝑡  parameter according to the following rules: 

6a: Convert the Euclidean gradient  
𝜕ℒ

𝜕𝑾
  to its Riemannian counterpart  

𝜕ℒ

𝜕𝑾𝑹   

according to:
𝜕ℒ

𝜕𝑾𝑡−1
𝑅 =

𝜕ℒ

𝜕𝑾𝑡−1
−𝑾𝑡

1

2
 𝐖𝑻 𝜕ℒ

𝜕𝑾𝑡−1
+

𝜕ℒ

𝜕𝑾𝑡−1

𝑇
𝑾   (14) 

6b:  The Riemannian gradient of 𝑾 belongs to a Stiefel tangent (vector) space, 

update 𝑾 by applying the retraction operation 𝑞 ⋅  on the Stiefel manifold 

which projects the tangent vector back to the Riemannian manifold:  

  𝑾𝑡 = 𝑞  𝑾𝑡−1 − 𝜂
𝜕ℒ

𝜕𝑾𝑡−1
𝑅    (15) 

7: UPDATE the 𝐌𝑡  parameter according to the following rules: 

7a: Convert the Euclidean gradient  
𝜕ℒ

𝜕𝑴
  to its Reimannian counterpart  

𝜕ℒ

𝜕𝑴𝑹   

according to
𝜕ℒ

𝜕𝑴𝑡−1
𝑅 = 𝑴𝑡−1

1

2
 

𝜕ℒ

𝜕𝑴𝑡−1
+

𝜕ℒ

𝜕𝑴𝑡−𝟏

𝑇
 𝑴𝑡−1   (16) 

7b: The Riemannian gradient of 𝑴 belongs to a SPD tangent (vector) space, 

update 𝑴 by applying the retraction operation 𝑒𝑥𝑝𝑚 ⋅  on the SPD 

manifold which projects the tangent vector back to the Riemannian 

manifold: 𝑴𝑡 = 𝐌𝑡−1
1/2

𝑒𝑥𝑝𝑚(−𝜂𝐌𝑡−1
−1/2 𝜕ℒ

𝜕𝑴𝑡−1
𝑅 𝐌𝑡−1

−1/2
)𝐌𝑡−1

1/2
  (17) 

8: IF  𝑡 EQUAL to epoch 

9:   RUN VALIDATION  

10: end_IF 

11:  end_FOR 

END 

 

 

Algorithm 2: Validate the parameters Θ = {𝐖,𝐀,𝐌} of the ∆ Θ  SPD distance. 

Requires: The trained ∆ Θ  model of Algorithm 1, Minimum value of Area under 

Curve (AUC) from previous executions of Algorithm 2. 

BEGIN 

1:  CREATE: 𝜔𝕍+ set of similar pairs by pairing genuine samples of the validation 

set.  

2: CREATE: 𝜔𝕍− set of dissimilar pairs by pairing genuine samples with simulated-

skilled forgeries only. 

3: EVALUATE: ∆(Θ) with the 𝜔𝕍+ and 𝜔𝕍− sets, and denote their scores by 

∆(Θ, 𝜔𝕍+) and ∆(Θ,𝜔𝕍−). 

4: PERFORM: Receiver operating characteristic (ROC) analysis with ∆(Θ, 𝜔𝕍+) 

and ∆(Θ,𝜔𝕍−). 

4a: MEASURE: 𝐴𝑈𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

5: IF  𝐴𝑈𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑚𝑖𝑛(𝐴𝑈𝐶) then: 

5a:   RESUME: Algorithm 1 of (13)-(17) with new mini-batches 

  RETURN: new value of 𝑚𝑖𝑛(𝐴𝑈𝐶). 

5b:  ELSEIF 𝐴𝑈𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑚𝑖𝑛(𝐴𝑈𝐶) for a number of predetermined number 

of epochs 𝑁𝑒𝑝𝑜𝑐 ℎ𝑠, then: 

   HALT: 

   RETURN: ∆ Θ  which corresponds to the 𝑚𝑖𝑛(𝐴𝑈𝐶).   

6: end_IF 

END 

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3333681

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of West Attica. Downloaded on December 01,2023 at 12:28:36 UTC from IEEE Xplore.  Restrictions apply. 



8 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

Algorithm 3: The basic 𝔚3 WI-SV protocol for one user 

Requires: (a) The learned ∆ Θ  model of Algorithms 1, 2. (b) the genuine and 

simulated-skilled forgery signature samples of a user (c) a set of 14 

covariance matrices 𝑪𝑆𝐶𝑀
(𝑘=1,…,14)

 of each signature image. 

BEGIN 

REPEAT 10 times 

1: CREATE: The set 𝒢𝑅  comprised of randomly selected 𝒢𝑁𝑅𝐸𝐹  genuine reference 

samples. 

2: CREATE: The 𝕋𝕤 test set comprised from the questioned remaining genuine 

(𝕋𝕤+) and simulated-skilled forgery samples (𝕋𝕤−) 

3: FOR(i): Each one of the questioned 𝑸𝑖 ∈ {𝕋𝕤+,𝕋𝕤−}  

4:     FOR(j): Each one 𝑹𝑗 ∈ 𝒢𝑅  of the 𝒢𝑁𝑅𝐸𝐹  genuine reference samples. 

5: FOR(k): each one of the 14 segments 

5a:    USE: 𝑸𝑖𝑆𝐶𝑀
(𝑘) as the 𝑪𝑆𝐶𝑀

𝑘  of 𝑸𝑖  

5b:     USE: 𝑹𝑗 𝑆𝐶𝑀

(𝑘)  as the 𝑪𝑆𝐶𝑀
𝑘  of 𝑹𝑗  

6:        EVALUATE: temporary scores 𝑡𝑠𝑐𝑖𝑗
𝑘 = ∆𝑖𝑗

𝑘  Θ,𝑸𝑖𝑆𝐶𝑀
(𝑘) ,𝑹𝑖𝑆𝐶𝑀

(𝑘)  . 

7: end_FOR(k) 

8:       end_FOR(j) 

9:    FOR(seg_idx) equal from 1up to 14 // #segments encountered to the final score 

10:      IF  seg_idx equals 1 then: 

10a:       CREATE: Scores 𝑠𝑐𝑖𝑗 = 𝑡𝑠𝑐𝑖𝑗
1 , // i.e. the derived from the 1 × 1 covs. 

           Else 

10b:       SORT: 𝑡𝑠𝑐𝑖𝑗
{𝑎𝑙𝑙  𝑘}

 in ascending order with respect to 𝑘:⟶ 𝑡𝑠𝑐𝑖𝑗
𝑠𝑜𝑟𝑡𝑒𝑑 (𝑘)

 

10c:       EVALUATE: Local scores 𝑠𝑐𝑖𝑗
𝑠𝑒𝑔 _𝑖𝑑𝑥

= 𝑚𝑒𝑎𝑛({𝑡𝑠𝑐𝑖𝑗
1:𝑠𝑒𝑔 _𝑖𝑑𝑥

}) 

10d:   end_IF 

11:     SET final score of the 𝑸𝒊
𝑠𝑒𝑔 _𝑖𝑑𝑥

 to be the 𝑚𝑖𝑛(𝑠𝑐𝑖𝑗
𝑠𝑒𝑔 _𝑖𝑑𝑥

) // over all j’s 

11:   end_FOR(seg_idx) 

12: end_FOR(i) 

      //We have the scores 𝑠𝑐
𝑸𝒊
𝑠𝑒𝑔 _𝑖𝑑𝑥  for all 𝑖-samples parametrized on 𝑠𝑒𝑔_𝑖𝑑𝑥.  

13: FOR(seg_idx) equal from 1up to 14 

14: PERFORM: ROC analysis with scores from 𝑠𝑐
𝑸𝒊
𝑠𝑒𝑔 _𝑖𝑑𝑥

∈𝕋𝕤+
 , 𝑠𝑐

𝑸𝒊
𝑠𝑒𝑔 _𝑖𝑑𝑥

∈𝕋𝕤−
 

15: MEASURE: 𝐸𝐸𝑅𝑢𝑠𝑒𝑟 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   for all 𝑠𝑒𝑔_𝑖𝑑𝑥. 

17: end_FOR(seg_idx) 

18: end_REPEAT 

19: RETURN: average 𝐸𝐸𝑅𝑢𝑠𝑒𝑟 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  for one user and all 𝑠𝑒𝑔_𝑖𝑑𝑥. 

END 

 The results on both ℱ𝑖𝑛𝑡𝑟𝑎,𝑖𝑛𝑡𝑒𝑟 WI-SV frameworks are 

reported under three modus operandi, denoted hereafter as 𝔚1 

𝔚2 and 𝔚3. The 𝔚1, addresses a very simple test query 

without considering the identity of any writer; one reference 

signature 𝑿𝑹𝑬𝑭 and one questioned 𝑿𝑸 SCM are presented in 

the learned ∆(Θ) model which evaluates a score 𝑠𝑐(𝑿𝑹𝑬𝑭,𝑿𝑸) =

∆(Θ)𝑿𝑹𝑬𝑭
𝑿𝑸

. The derived scores from all testing pairs are 

evaluated and conditioned as similar 𝑠𝑐𝕋𝕤+ and dissimilar 

𝑠𝑐𝕋𝕤−. Then, a global sliding threshold evaluates the global 

false acceptance (FARSF), the false rejection rates (FRR) and 

eventually reports the global equal error rate 𝐸𝐸𝑅𝑆𝐹
𝔚 −𝑔𝑙𝑜𝑏𝑎𝑙 . 

The 𝔚2 is similar to 𝔚1 but it operates and reports the 

𝐸𝐸𝑅𝑆𝐹
𝔚 −𝑙𝑜𝑐𝑎𝑙  at an average local (or user) level. It must be 

noted here that the reported results of 𝔚1 and 𝔚2 are for the 

case of using only one global 𝑪𝑆𝐶𝑀
1×1  for each signature image. 

The notation 1 × 1 signifies the global covariance matrix 

derived from all signature pixels.  

Regarding the 𝔚3, a more detailed user defined protocol is 

explored in which: a) any questioned 𝑿𝑸 SCM is paired 

alongside a reference set 𝒢𝑅 comprised by five 𝒢𝑁𝑅𝐸𝐹 = 5 or 

ten 𝒢𝑁𝑅𝐸𝐹 = 10 genuine reference samples and b) instead of 

using only one global 𝑪𝑆𝐶𝑀
1×1  we represented any signature 

image with a set of four 𝑪𝑆𝐶𝑀
{2×2}

 and nine 𝑪𝑆𝐶𝑀
{3×3}

 covariance 

matrices as described in section II.A. Thus, each image is 

represented by a set of 14 covariance matrices 𝑪{𝑘=1,..14}. 
Algorithm 3 presents in detail the implementation steps for 

one user. Summarizing, the score between the 𝑿𝑸 and one 

reference sample 𝑿𝑹𝑬𝑭 is evaluated in step (5)-(8) by applying 

∆(Θ) to each pair of segments. These fourteen local scores are 

sorted and then, in step (10) the seg_idx parameter, which 

denotes the number of participating segments, provide a local 

score by averaging (step 10c). Finally the minimum value of 

all scores between 𝑿𝑸 and all reference samples 𝑿𝑹𝑬𝑭 is 

selected and denotes hereafter the 𝑸-score of the 𝑿𝑸, 

conditioned on the remaining genuine of forgery side of the 

testing set. The two ends i.e. seg_idx =1,14 relate to the error 

rates when: a) only the global covariance participates and b) 

all 14 segments are accounted. 

C. Results and Discussion 

All experimental protocols were conducted for a number of 

combinations of the 𝑚, 𝑝 hyper-parameters of ∆(Θ), defined at 

section IV. The 𝑚 parameter defines the number of block-

diagonal SPD matrices 𝑿𝑘=1:𝑚,
 and consequently the number 

of sub-distances {𝐷𝑨
𝑘(⋅,⋅)}𝑘=1

𝑚 , and the 𝑝 parameter defines the 

size of any block diagonal SPD matrix 𝑿𝑘 ∈ ℝ𝑝×𝑝 used in the 

evaluation of any 𝐷𝑨
𝑘 . We recap here that the projection matrix 

𝑾 ∈ ℝ𝑛×𝑚⋅𝑝 maps any initial signature covariance matrix 

from the 𝑃𝑛(=10) manifold to a new 𝑃𝑚⋅𝑝 manifold with 𝑚-

numbered local covariance matrices 𝑿𝑘 ∈ 𝑃𝑝. The first 

column of Table II show the values of 𝑚, 𝑝 hyper-parameters 

that were used in the design of the experimental stage. Due to 

the relative small initial dimensionality of the 𝑃10 manifold the 

case in which the product 𝑚 ⋅ 𝑝 of the final SPD 

dimensionality equal 10 was also explored. The initial results 

for the ℱ𝑖𝑛𝑡𝑟𝑎, the first two modus operandi 𝔚1,𝔚2 and the 

two training setups 𝕋ℝ+, 𝕋ℝ− are presented in Table II. For 

the case of the 𝔚3 modus and both training setups of 𝕋ℝ−, 

(i.e.  𝜔0%𝑅𝐹
𝕋ℝ−  and 𝜔100%𝑅𝐹

𝕋ℝ− ) the corresponding local EER’s are 

TABLE II 

EQUAL ERROR RATES (%): ℱ𝑖𝑛𝑡𝑟𝑎 BLIND FRAMEWORK 

FOR BOTH TYPES OF DISSIMILAR PAIRS AND 𝔚1−2  

 
 

𝑚, 𝑝 

CEDAR  MCYT BENGALI HINDI 

DISSIMILAR PAIRS SETUP = 𝜔100%𝑅𝐹
𝕋ℝ−  

𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 

1,7 8.52 3.93 18.6 11.9 7.70 4.36 15.2 9.34 

1,8 8.17 3.96 17.7 11.1 7.55 3.39 15.7 9.57 

1,9 8.06 4.05 17.5 10.9 8.39 3.86 15.6 9.54 

1,10 8.53 4.65 17.4 10.8 11.1 6.39 15.6 9.43 

2,3 12.6 6.66 21.6 14.0 11.4 7.81 20.4 12.8 

2,4 11.1 7.04 19.9 12.8 8.81 5.37 17.5 10.5 

2,5 8.79 5.70 18.3 11.8 8.15 4.03 15.5 9.92 

3,3 11.4 7.28 19.7 12.9 10.2 6.59 19.4 11.4 

DISSIMILAR PAIRS SETUP = 𝜔0%𝑅𝐹
𝕋ℝ−

   

1,7 8.26 4.26 18.2 11.4 7.07 3.82 14.8 9.21 

1,8 7.55 3.63 17.9 11.2 7.59 3.43 15.3 9.32 

1,9 7.82 3.90 17.6 10.6 7.66 3.40 15.3 9.61 

1,10 8.66 4.59 17.6 11.0 11.3 6.54 15.8 9.63 

2,3 9.63 5.86 25.5 15.7 11.9 7.29 16.7 11.3 

2,4 8.52 4.78 22.0 13.2 7.86 4.61 14.3 9.88 

2,5 8.11 5.28 19.5 12.2 7.57 3.56 14.0 9.57 

3,3 8.85 5.39 24.1 14.7 7.86 4.65 19.2 11.3 
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Fig. 3. Local EERs as a function of the seg_idx=1,…14 parameter of Algorithm 3 for the ℱ𝑖𝑛𝑡𝑟𝑎 blind framework, the 𝔚3 

modus, 10 reference samples and the two variants of the negative class pairs 𝜔𝕋ℝ− a)  𝜔0%𝑅𝐹
𝕋ℝ−  and b) 𝜔100%𝑅𝐹

𝕋ℝ− .  

CEDAR Learning 

& Testing dataset 

RF=0% 

CEDAR Learning 

& Testing dataset 

RF=100% 

MCYT Learning 

& Testing dataset 

RF=0% 

MCYT Learning 

& Testing dataset 

RF=100% 

BANGLA Learning 

& Testing dataset 

RF=0% 

BANGLA Learning 

& Testing dataset 

RF=100% 

 HINDI Learning 

& Testing dataset 

RF=0% 

HINDI Learning 

& Testing dataset

RF=100% 

 
Fig. 2. Local EERs as a function of the seg_idx=1,…14 parameter of Algorithm 3 for the ℱ𝑖𝑛𝑡𝑟𝑎 blind framework, the 𝔚3 

modus, 5 reference samples and the two variants of the negative class pairs 𝜔𝕋ℝ− a)  𝜔0%𝑅𝐹
𝕋ℝ−  and b) 𝜔100%𝑅𝐹

𝕋ℝ− .  

CEDAR Learning 

& Testing dataset 

RF=100% 

CEDAR Learning 

& Testing dataset 

RF=0% 

MCYT Learning 

& Testing dataset 

RF=0% 

MCYT Learning 

& Testing dataset 

RF=100% 

HINDI Learning & 

Testing dataset 

RF=0% 

HINDI Learning & 

Testing dataset 

RF=100% 

BANGLA Learning & 

Testing dataset 

RF=0% 

BANGLA Learning & 

Testing dataset 

RF=100% 

displayed in figures 2, 3 (for 5 and 10 references) as a function of the seg_idx parameter of Algorithm 3.  

TABLE III 

EQUAL ERROR RATES (%): ℱ2 BLIND-FRAMEWORK FOR THE TWO TYPES OF DISSIMILAR PAIRS AND 𝔚1−2 MODES. 

 
 

 

Learning Sig. Set -CEDAR 

𝑚, 𝑝 

MCYT BANGLA HINDI 

DISSIMILAR PAIRS SETUP = 𝜔100%𝑅𝐹
𝕋ℝ−  

𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 

1,8 17.5 9.75 9.01 4.55 15.4 9.62 

1,9 17.2 8.92 8.49 3.56 15.6 9.03 

1,10 16.8 9.08 9.97 4.07 15.5 8.29 

2,5 17.2 10.0 11.2 4.89 16.8 9.90 

 DISSIMILAR PAIRS SETUP = 𝜔0%𝑅𝐹
𝕋ℝ−  

1,8 18.9 10.4 7.37 2.44 16.8 10.3 

1,9 17.5 9.49 7.79 3.34 16.1 9.38 

1,10 17.0 9.39 9.83 4.08 15.5 8.35 

2,5 19.4 11.1 11.3 5.58 17.5 9.87 

 

Learning Sig. Set - MCYT 

CEDAR BANGLA HINDI 

DISSIMILAR PAIRS SETUP = 𝜔100%𝑅𝐹
𝕋ℝ−  

𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 

11.0 4.88 11.1 3.54 15.3 8.04 

9.77 4.44 11.3 4.66 15.6 8.13 

8.70 3.93 10.9 4.62 15.6 8.24 

12.6 6.28 10.2 4.89 16.4 9.08 

DISSIMILAR PAIRS SETUP = 𝜔0%𝑅𝐹
𝕋ℝ−  

10.0 4.49 12.0 4.53 16.0 8.39 

8.98 3.84 10.9 4.22 15.5 8.17 

8.57 3.81 10.3 4.29 15.5 8.27 

12.6 6.45 13.0 5.55 17.6 9.48 

 

Learning Sig. Set - BANGLA 

CEDAR MCYT HINDI 

DISSIMILAR PAIRS SETUP = 𝜔100%𝑅𝐹
𝕋ℝ−  

𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 

10.1 4.89 18.9 10.3 12.8 5.69 

9.67 4.43 18.0 9.85 12.3 5.44 

8.50 3.77 17.2 9.33 10.4 4.34 

13.9 5.55 21.6 11.8 13.6 4.06 

DISSIMILAR PAIRS SETUP = 𝜔0%𝑅𝐹
𝕋ℝ−  

9.77 4.47 18.4 9.97 13.4 5.84 

8.82 4.05 17.3 9.48 11.5 5.11 

8.59 3.86 17.3 9.41 10.8 4.54 

12.6 6.61 18.4 10.6 12.5 5.26 

 

Learning Sig. Set - HINDI 

CEDAR MCYT HINDI 

DISSIMILAR PAIRS SETUP = 𝜔100%𝑅𝐹
𝕋ℝ−  

𝔚1 𝔚2 𝔚1 𝔚2 𝔚1 𝔚2 

9.79 4.92 18.1 10.1 15.3 9.21 

8.29 3.22 17.4 9.42 15.1 8.54 

8.41 3.68 17.0 9.19 14.9 8.25 

11.6 6.01 18.9 10.9 15.0 8.73 

DISSIMILAR PAIRS SETUP = 𝜔0%𝑅𝐹
𝕋ℝ−  

10.3 5.06 17.4 10.1 15.2 9.18 

7.60 3.16 17.7 9.57 15.8 9.29 

8.41 3.68 17.0 9.20 15.5 8.27 

12.0 4.10 19.3 11.0 16.3 9.98 
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The analogous experiments for the  ℱ𝑏𝑙𝑖𝑛𝑑 , the first two 

modus operandi 𝔚1,𝔚2 and the two training setups of 𝕋ℝ− 

are shown in Table III. Figures 4, 5 displays the local 

𝐸𝐸𝑅𝑆𝐹
𝔚3−𝑙𝑜𝑐𝑎𝑙  for the case of the 𝔚3 modus (10 and 5 

references) and the training setups of 𝕋ℝ+, 𝕋ℝ− as a function 

of the seg_idx parameter. The derived results are presented 

only for the case of having 𝑚 = 1, 𝑝 = 10 due to the fact that 

with this parameter pair we obtain robust results close enough 

to the lower verification error. Additional figures for several 

configurations of 𝑚, 𝑝 of 𝔚3 modus can be visually accessed 

in the supplementary material. 

Commenting on the results for both ℱ𝑖𝑛𝑡𝑟𝑎 and ℱ𝑏𝑙𝑖𝑛𝑑, we 

initiate our discussion by addressing a number of broad issues. 

At first, we observe from figures 4 and 5 of the 𝔚3 modus 

operandi, the undeniable fact that the best achievable 

verification error rates are reported when more than one image 

segment (and corresponding covariance), is involved in the 

score calculation. So, we state that the two ends of the seg_idx 

parameter of Algorithm 3 are not the ones that attain the lower 

verification error rates. Intuitively, the use of a) the global 

image and equivalent global 𝑪𝑆𝐶𝑀
1×1  covariance (seg_idx=1), as 

well as b) the entire fourteen image segments (seg_idx=14), 

clearly correspond to the two ends of the available granular 

level of information (i.e. too coarse, too fine) that participates 

in the decision. A complementary observation is that the 

optimal number of participating segments that achieve the 

lowest verification error rates in 𝒟1 (two up to four) in both 

ℱ𝑖𝑛𝑡𝑟𝑎 and ℱ𝑏𝑙𝑖𝑛𝑑 experiments is smaller when compared to 

the ones that provide the lowest error rates for 𝒟2−4 (seven up 

to ten). This is probably due to the fact that the signature 

images of the 𝒟1 dataset contain a smaller amount of signature 

pixels. Therefore any relative covariance derived from these 

segments might suffer from degraded properties, such as a 

much larger number of near zero eigenvalues and might not be 

as much discriminative as the covariance of the segments of 

the 𝒟2−4 sets.  

Secondly, Figures 2, 3 and Table II shows that a direct 

comparison between the 𝜔100%𝑅𝐹
𝕋ℝ−  and 𝜔0%𝑅𝐹

𝕋ℝ−  of the ℱ𝑖𝑛𝑡𝑟𝑎, 

reveals that the use of simulated-or-skilled forgeries 𝜔0%𝑅𝐹
𝕋ℝ−  for 

the 𝕋ℝ− learning set, leads to more robust results in terms of 

having more 𝑚, 𝑝 parameter pairs with overall lower 

verification error rates. This is a somewhat anticipated 

outcome since each individual dataset has been constructed 

with the similar acquisition and a-priori conditions. Thus, the 

learned distance models trained with simulated-or-skilled 

forgery samples inherently provide the necessary 

generalization on the learning stage. The leverage of the 

𝜔0%𝑅𝐹
𝕋ℝ−  of the ℱ𝑖𝑛𝑡𝑟𝑎 models weakens in the case of the ℱ𝑏𝑙𝑖𝑛𝑑 

since figures 4, 5 and Table III (as well as the figures provided 

in the supplementary material) indicate that the models that 

are learned with the 𝜔100%𝑅𝐹
𝕋ℝ−  protocol are more robust when 

compared to the ones that are learned with the 𝜔0%𝑅𝐹
𝕋ℝ−  protocol. 

The above perspective allows us to assert that the proposed 

SPD modelling with the learned distances operate efficiently 

in the WI-SV context even when blind datasets are explored.  

Figures 2, 3 inspection provides evidence that the 𝑚=1, 

TABLE IV 

EQUAL ERROR RATES (%) FOR ℱ𝑖𝑛𝑡𝑟𝑎 (BLOCK DIAGONAL) 

& ℱ𝑏𝑙𝑖𝑛𝑑  FOR BOTH TYPES OF DISSIMILAR PAIRS, 

 𝔚3 MODUS, FOR 5 AND 10 REFERENCE SAMPLES. NUMBER 

OF PARTICIPATING SEGMENTS EQUAL SEVEN (FOUR FOR 

CEDAR) AND 𝑚=1, 𝑝=10. 

 

 
Fig. 4. Local EERs as a function of the seg_idx parameter of 

Algorithm 3 for the blind ℱ𝑖𝑛𝑡𝑒𝑟 framework and the 𝔚3 

modus, with 10 reference samples. 𝑚 = 1, 𝑝 = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Local EERs as a function of the seg_idx parameter of 

Algorithm 3 for the ℱ1 intra-framework and the 𝔚3 modus. 

Each line relate to each one of the 𝒟1−4 datasets. Left and 

right columns correspond to 𝜔0%𝑅𝐹
𝕋ℝ−  and. 

 
Fig. 5. Local EERs as a function of the seg_idx parameter of 

Algorithm 3 for the blind ℱ𝑖𝑛𝑡𝑒𝑟framework and the 𝔚3 

modus, with 5 reference samples. 𝑚 = 1, 𝑝 = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Local EERs as a function of the seg_idx parameter of 

Algorithm 3 for the ℱ1 intra-framework and the 𝔚3 modus. 

Each line relate to each one of the 𝒟1−4 datasets. Left and 

right columns correspond to 𝜔0%𝑅𝐹
𝕋ℝ−  and. 
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𝑝=10 values of the proposed model form a robust distance for 

almost all datasets with some minor alterations in 𝒟1 (𝑚=1, 

𝑝=7, 8, 9) and 𝒟2 (𝑚=1, 𝑝=9) which do not pose a loss of 

generality. A possible explanation comes from the fact that the 

dimensionality of the original SPD manifold 𝑃10 is relatively 

low which does not allow a complete exploitation of the 

mapped manifolds 𝑃𝑚⋅𝑝. In theory, higher dimensional SPD 

manifolds can be employed with the use of high dimensional 

keypoint descriptors, although this is out of the scope of this 

work. Specific details on the results derived by the blind 

ℱ𝑖𝑛𝑡𝑟𝑎 and ℱ𝑖𝑛𝑡𝑒𝑟  frameworks on all datasets for the 𝔚3 

modus are now provided in Table V by means of the average 

EERs. 

 The use of the 𝑚=1, 𝑝=10 for presentation purposes is 

TABLE V 

COMPARATIVE SUMMARY OF THE PROPOSED WI-SV METHOD WITH OTHER SV-WI SYSTEMS (%) 
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justified in the above paragraph. In addition we report the 

derived results when the number of participating segments has 

been set to four for the 𝒟1 dataset with fewer pixels and seven 

for the remaining 𝒟2−4 datasets. While it is a fact that there 

are other values of the 𝑚,𝑝 parameters which provide lower 

error rates, we clearly observe that we obtain robust results for 

all learning and testing datasets for the specific case presented 

in Figures 4, 5 and Table IV.  

Table V provide, to the best of our abilities, a summary of 

state-of-the-art (SOTA) results for WI-SV systems reported on 

the four signature datasets by means of the average error rate 

(AERSF) or the global (and/or local) versions of the equal error 

rate (EERSF). The reported EERSF denotes the equal error rate 

between the FRR - false rejection Rate i.e. similar pairs 

between similar signatures being classified as dissimilar 

(Genuine to Skilled-or-simulated forgery) ones and FARSF - 

false acceptance rate i.e. dissimilar pairs between dissimilar 

signatures (Genuine to Skilled-or-simulated forgery) being 

classified as similar ones. The AERSF can be related a) to the 

accuracy (i.e. AER(%)=100%-Accuracy(%)) or b) the average 

of specific values of FRR and FARSF. 

The metric “AERSF” is usually met when the decision 

threshold is considered a-priori known. Thus, we consider the 

FARSF and FRR to be known while the AERSF represents their 

average value. Sometimes also the reported results are 

provided by means of the AER, computed at the EER 

threshold (AERSF @EER). The metric EER (global) has been 

used for the 𝔚1 protocol (only 1 reference sample) in which 

there are only two classes: similar vs dissimilar pairs, 

irrespective of the origin of the writer. The metric EERSF 

(local) has been used for the 𝔚2 or 𝔚3 protocols.  

The contents of Table V clearly indicate that the proposed 

SPD learnable distance framework operates efficiently in the 

challenging WI-SV oriented framework. Finally, table VI 

summarizes the reported results for a number of WD-SV 

systems found in the literature, along with the proposed SPD 

method. Its inspection shows that, the proposed SPD-WI 

framework delivers low error rates even when it is viewed 

with respect to WD-SV SOTA systems. 

VI. CONCLUSION 

In this work, offline writer-independent signature 

verification was addressed by learning a robust similarity 

distance between pairs of similar and dissimilar signature 

images and corresponding low dimensional covariance 

matrices. The similarity measure is comprised of three 

learnable parts namely, a manifold to manifold projection 𝑾, 

a family of alpha-beta divergences 𝑨 and an integration 

function 𝑴. The experiments were conducted with four 

popular datasets, in blind intra and inter frameworks and the 

verification errors reported clearly indicate that the proposed 

similarity distance is effective and worthy of investigation. 

Our future research agenda includes among others, a 

comparative analysis with other Riemannian network 

architectures designed for SPD matrix learning, something 

that now falls beyond the scope of our current work. 

Perhaps the weakest point (i.e. a limitation) in our WI-SPD 

context is the fact that this descriptor is not generative in the 

sense that one can compute the Riemannian mean of two 

covariance matrices but this will not allow us to generate the 

"mean signature image". Future research will focus towards 

the design of a WI-SV system with synthetic handwritten 

signature images, by means of popular duplicators or 

generative attacking methods, in order to assist a truly 

agnostic signature verifier in the SPD domain.  
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