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Abstract

The increasing occurrence of wildfires, amplified by the changing climate conditions and drought, poses threats to human
ives, the environment and the geographically dispersed infrastructures. Such impact necessitates the prompt identification of
ildfires so that appropriate countermeasures are taken. The availability of electronic equipment, such as Unmanned Aerial
ehicles, allows for images from dynamically changing, geographical areas, which must be directly processed for wildfire

dentification and contextualization. In this work, we identify the requirements and the constraints in terms of computational
esources of this workflow, and investigate lightweight CNNs to be used. SqueezeNet, ShuffleNet, MobileNetv2 as well as
esNet50 are used for fire identification. To simulate the realistic conditions, we have investigated multiple datasets, selecting
orest-Fire and Fire-Flame datasets and images from 3rd party sources and performed cross-dataset identification evaluation.
o rationalize the required computational resources and the operation cost, lightweight networks have been selected and
ompared with ResNet-50, which is more complex. The contextualization, i.e. the detection of elements related to energy
nfrastructures, has been based on image semantic segmentation, performed through ResNet-18. The identification results,
xpressed as classification accuracy has reached 96%, with satisfactory results in the cross dataset scenarios, while we have
dentified five classes from the CamVid dataset which can be used for the contextualization needs.

2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Wildfires pose serious threat to human lives, natural environment, and the infrastructures. The climate change
mplifies the frequency and impact of wildfires. This increasing tendency is verified by statistics, as in 2021, fires
ere mapped in 22 of the European Union 27 Member States, burning 500,566 hectares (ha) in total, more than the

pproximate 340,000 ha of 2020 (with the exception of 2017 when over 10,000 km2 had burnt) [1]. The situation
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is similar in the United States, where 100,000 wildfires occur each year with the National Interagency Fire Centre
reporting in 2022 64,127 fires affecting 7,343,939 acres and in 2021 54,976 fires affecting 6,814,073 acres [2].
Especially for the infrastructure, including the electrical power and energy systems, wildfires can disrupt the business
continuity of critical elements in power generation and distribution and cause impactful security incidents.

Considering the increasing difficulties in the confrontation of wildfires, effort is dedicated to the early detection.
owards this direction, new remote sensing approaches become available, including ground sensor -based systems,
anned and unmanned aerial vehicle-based systems, and satellite-based systems. While a rich set of sensors (such

s temperature, smoke, infrared, gas, optical spectroscopic carbon monoxide sensor) can be effectively used for
etection in (geographically) restricted environments, the need for extensive coverage creates challenges in the
ases of remote, open air and forest areas. To be able to make decisions in real time, the processing of the sensed
ata have to take place promptly so that fire is localized. In parallel context-based data related to infrastructure
otentially affected by the wildfire combined with risk analysis can allow for intelligent decisions. However, fire
nd smoke detection is a challenging image-processing task, due to the highly dynamic nature of these phenomena,
heir irregular shapes and forms, as well as their asymmetrical distribution in space. This dynamic nature is amplified
hen images are taken irregularly in time from dynamically changing geographical settings. In addition, the quality
f the images may also vary, due to the capturing technique, the changing field of view, the employed equipment,
he distance, the physical barriers and even the compression applied.

In this work, we focus on the early detection and identification of fire in open air areas, endangering critical
nergy-related infrastructures. As the early fire detection belongs to the family of critical applications, involving
eal time decision making, a complete solution is designed including the identification and the contextualization
achieved through semantic segmentation). We assume the availability of distributed image retrieval mechanisms
such as UAV and/or satellite) which provide multiple, near real-time images, of medium or even low quality, in
ynamically changing geographic areas. We also assume that the sensing systems are equipped with computational
esources allowing the on-the-spot processing of the available visual material. From the technological perspective,
e employ Convolutional Neural Networks (CNNs) for early fire detection and contextualization/ semantic

egmentation. The particularities of the problem at hand involve a) the existence of a limited number of datasets
especially considering that the characteristics of the datasets can orient or even define the approach to solve a
roblem and influence the performance of the algorithms) and b) the need to restrict the required computational
esources. For this we have considered a wide range of datasets, selecting two of them with the addition of images
oming from 3rd party sources, to confront different settings in terms of resolution, noise and compression, as these
ay not be easily perceptible by the human visual system may affect the contained visual information used by the
L modules. To enhance robustness and flexibility, we employ transfer learning, cross-dataset evaluation and noise

nclusion.

.1. Similar work

Vision-based systems have used a variety of equipment, mechanisms and techniques such as background
ubtraction in video acquired by static cameras [3], the usage of synthetic images to train CNNs [4], linear color
pace conversion to detect fire pixels using Particle Swarm Optimization (PSO) for proper weights of the conversion
atrix and K-medoids as a fitness metric [5], fuzzy logic systems using the Gaussian membership functions (GMFs)

or the shape, size and motion variation of a fire from successive frames, along with the calculation of the distance
etween the camera and the fire region [6], and robotic systems with unmanned aerial vehicles (UAVs) with color
ecision rule to extract fire-colored pixels [7,8]. Image classification/ detection in fire detection can take place
sing traditional methods (where the selection of the most appropriate and representative features is an open
nd challenging issue [9]) and or neural networks. The former employs the features, such as color, texture, and
hape of smoke and fire. The latter involve neural networks and specifically convolutional as a class of neural
etworks can process grid-based data and achieve high classification accuracy [10–12]. Zhang et al. [13] have
resented a deep learning-based detection system for forest fires, using a full-image and fine-grained patch fire
lassifier. Mahmoud and Ren [14] have presented a forest fire detection system that applies a rule-based image
rocessing technique and temporal variation. Muhammad et al. [15] have presented a deep CNN fire detection
ystem applied upon video. Avazov et al. [16] developed a fire detector that accurately detects even small sparks
nd sounds an alarm within 8 s of a fire outbreak. A novel convolutional neural network was developed to detect
248
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fire regions using an enhanced You Only Look Once (YOLO) v4network. Hu et al. [17] propose multi-oriented
detection based on a value conversion-attention mechanism module and Mixed-NMS (MVMNet). Xu et al. [18]
present a lightweight fire-detection algorithm, Light-YOLOv5 (You Only Look Once) achieving detection speed
of 91.1 fps., Zhang et al. [19] has designed a neural network architecture for forest fire detection and recognition
based on Attention U-Net and SqueezeNet (ATT Squeeze U-Net), performing segmentation to extract the shape
of forest fire, and classification to verify the detected fire area. Wang et al. [20] perform forest fire detection
framework using superpixel-based suspicious fire region proposal and light-weight convolutional neural network
and specifically the Expanded Squeeze-and-Excitation ShuffleNet (ESE-ShuffleNet). The usage of CNNs appears as
a common denominator of recent solutions, with the computational cost rationalization coming into play. Aspects
related to complex and dynamically changing backgrounds create challenges, especially due to the fact that the
datasets typically focus on specific settings and backgrounds.

1.2. Structure of the paper

The structure of the paper is as follows: Section 2 includes the methodological aspects, and specifically the
election of the CNNs and the application of transfer learning to cover the constraints applied. It also discusses the
dentified datasets, their characteristics, the consideration of noise and the mechanisms to extend them. Section 3
escribes the implementation, including the preparation of the CNNs through transfer learning and the classification
f images towards fire detection. Section 4 presents and discusses the results and, Section 5 includes the conclusion
nd the future work.

. Methodology

.1. Selection of CNNs and transfer learning

CNN architecture is defined through the number of layers and their connections. The selection of CNNs is a
hallenging problem, depending on the case study, the requirements and constraints. In our case the key requirements
he need for high classification accuracy, the generalization capabilities upon new data (due to the dynamically
hanging geographical context) and the constrained computational and telecommunications resources. In this view,
e have selected four CNNs, namely a) SqueezeNet [21], as a simplified version of AlexNet, which achieves

imilar accuracy with 50x fewer parameters in classification tasks, b) ShuffleNet [22], which operates in constrained
nvironments using techniques of pointwise group convolution and channel shuffle, c) MobileNet [23], which can
e applied to mobile devices using depth-wise separable convolutions and d) ResNet-50 [24], as a representative of
arger CNNs. Table 1 describes the characteristics of the selected CNNs.

Table 1. Characteristics of the selected CNNs.

CNN SqueezeNet ShuffleNet MobileNet_v2 ResNet-50

Depth 18 50 53 50
Parameters (millions) 1.24 1.4 3.5 25.6

Considering limitations in the number and quality of labeled data, a typical bottleneck in supervised learning
25], we have applied transfer learning for fire detection and consequent semantic segmentation for object
etection (contextualization). The selected CNNs SqueezeNet, ShuffleNet, MobileNet and ResNet-50 are trained
n ImageNet1 and they are retrained with the specific objective of fire identification. During retraining the training
oss (the negative log likelihood, NLL) and its gradients per model parameter are calculated (backpropagation) and
sed to update the parameters with the optimizer. The retraining parameters is an open question, including the
umber of layers to be retrained, the optimizer, the number of epochs and the learning rate.

To make the framework adaptable to vertical application, such as the protection of energy infrastructure, we
eed to identify related objects such as buildings, roads, electricity transmission lines. Object detections cannot be
ontinuously applied, rather in case fire identification is positive. Faster R-CNN, You Only Look Once (YOLO)
2-4, and Single Shot Detection (SSD) networks are focusing on semantic segmentation. We have used Deeplab
3+ [26] network pretrained on the CamVid database [27] and selected a set of interesting objects.

1 http://www.image-net.org
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2.2. Datasets

Datasets differ regarding the type and number of items they contain, the origin of the images, the bias, the
omogeneity (if for example the material has been created for this purpose or they have been queried from existing
mage databases), the technical characteristics, the curation and licensing aspects. Our research for reusable datasets
elated to wildfire identification has yielded relatively limited results, as in the existing datasets the visualization
f large-scale fires which is straightforward to identify and additionally it is not appropriate for training in an
arly stage of the fire. For example, using FLAME2 due to its specific background and clear fire visualization the
ccuracy can be maximized. In this view, the datasets considered include the following: (a) Forest-Fire dataset

[28]: with 3-channeled images anonymized from existing databases with 1900 images and two classes (fire, no-fire),
(b) Fire-Flame3 dataset of 3 classes (fire, smoke, neutral) and 3000 images (for comparison reasons we excluded the
“smoke” class), (c) Unknown Images: a set of images that have not been used in the networks’ training procedure
and have been collected from various publicly available sources, with 100 images in each class. Table 2 presents
the characteristics of the selected datasets.

Table 2. The datasets.

Dataset Forest-Fire Fire-Flame Unknown Images

Classes Fire – No Fire Fire – No Fire Fire – No Fire
Means Terrestrial and aerial Terrestrial and aerial Terrestrial and aerial
Location Forest Everywhere Everywhere
Resolution 250 × 250 pixels Not standard Not standard
View Front and top Front Front and top
Number of images 1900 2000 200
Distribution among classes Uniform Uniform Uniform

Sample images from each dataset are shown in Fig. 1.

Fig. 1. Sample images from the three datasets. (All images are publicly available).

2 https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
3 https://github.com/DeepQuestAI/Fire-Smoke-Dataset
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3. Implementation

Based upon the two selected datasets (i.e. Forest-Fire and Fire-Flame) and using the pre-trained neural networks
entioned in Section 2.1 (i.e. SqueezeNet, ShuffleNet, MobileNet v2 and ResNet-50) we perform experiments

based on transfer learning. Each set is divided into training set and testing set of 80% and 20% respectively. In the
first experiment we investigate the retraining options evaluating the classification accuracy. After determining the
optimal retraining parameters and the maximum of the classification accuracy, the images are subjected to Gaussian
and Salt & Pepper noise at two different levels, i.e. medium and high. This is to determine which network is more
robust against noise and which noise has the most destructive effects.

To approach realistic real-time scenarios, we also perform cross-dataset evaluations: the retrained networks are
tested on a set of images that have not taken part in the training of the networks. The out-of-training-domain dataset
(i.e. the “Unknown Images”) is used as the test set and contains publicly available images from other datasets as
described in Section 2.2. In the images of the last set, fire occupies a different part of the image (including also
the more challenging early stage). Also, these images are examined after being subjected to noise. In parallel, the
images are analyzed with semantic segmentation by associating each pixel of the image with an object category
and in this way areas of interest (such as roads, buildings, people, vehicles, etc.) are detected in the images.

The workflow of the procedure is described in Fig. 2.

Fig. 2. Workflow scheme.

3.1. Training options

Determining the values of the transfer learning hyper-parameters is related to the adjustment of the weights
using back-propagation to maximize classification accuracy and minimize the loss function. We have considered
the Stochastic Gradient Descent with Momentum (SGDM) [29] and the Adaptive Moment Estimation (Adam) [30]
with the former achieving superior results. Next, we investigate four different values of the mini-batch size (50, 100,
200 and 300) which is the divisor of the training set number of files, and the quotient that occurs is the number of
iterations which are processed in each epoch in order to adjust the weights. The maximum number of epochs is the
full passes of the training set, while validation patience is the number of times after which the loss stops decreasing.
The learning rate refers to the size of corrective steps in the procedure of updating the weights. The combinations
resulting from the two optimizers and the four values of mini-batch size (8 in number) were iteratively tested, while
the maximum number of epochs was set to a flexible value which is combined with the value of validation patience.
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The learning rate was also set to a low value so that small steps of updating the weights are made which delays
the training but leads to more optimal weight values.

Specifically, the values of the hyper-parameters have been set as follows: Optimizer: SGDM, Mini-batch size:
00, Maximum Epochs: 10 (in all cases the training procedure stopped before the 10th epoch), Validation Patience:
, Learning Rate: 2 × 10−3. Furthermore, we shuffled the images in each epoch so that the update of the weights
onsiders different set of images and augmentation operations (reflections, stretches and translations) to avoid
verfitting.

.2. Noise

Air and terrestrial monitoring images can be affected by noise, during capturing (e.g. due to aperture used
nd capturing parameters such as shutter speed), the (lossy) compression and transmission. This means that fire
dentification may have to take place in low quality or noisy images. Types of noise include Gaussian [31] and
mpulse [32] noise, missing image samples, packet loss in image transmission, and tampered images. Such noise
an be easily ignored by the human optical system, but it can affect the performance of CNN during classification.
onsidering that when the models classify data of the same quality as the training data they achieve the highest
ccuracy, we decided to test the models on noisy images (while trained on clean ones) in order to estimate the
ower boundary of the classification accuracy. The images have been subjected to Gaussian and Salt & Pepper
oises by adjusting their parameters to obtain the same peak signal-to-noise ratio (PSNR). We consider two noise
evels, specifically medium with PSNR set to 15 dB, and high with PSNR set to 10 dB. The effect of the two levels
f noise on the images is shown in Fig. 3.

Fig. 3. Visualization of the effect of the two noise levels on image.

3.3. Semantic segmentation

The semantic segmentation is an additional process which, in combination with the detection of the fire, supports
the determination of the level of risk depending on the area where it is located. The detection of interesting objects
can give an indication on the type of the area, such as residential, forest, or affecting infrastructures (e.g. wind farm,
photovoltaic or energy transmission lines). We have employed the ResNet-18 based Deeplab v3+ network (i.e. its
initial weights are identical with those of ResNet-18) which is trained on the CamVid dataset. This dataset consists
of street-level views of images with pixel-level labels of 32 classes including building, car, pedestrian, tree etc.
According to the number of pixels that include the points of interest, the corresponding conclusions can be drawn.
252



E. Tsalera, A. Papadakis, I. Voyiatzis et al. Energy Reports 9 (2023) 247–257

&
c

Fig. 4 shows an example of semantic segmentation on a successfully classified image. Although this image does
not depict a forest fire, it was chosen to highlight the function of semantic segmentation since it contains objects
of interest.

Fig. 4. Semantic segmentation in an image with fire.

According to the color bar on the side we see that the pedestrian, the building, the electricity pylon, the rode
and the plants are successfully detected. These classes can determine the level of immediacy of intervention and
also the way of this (since there is a road).

4. Results and discussion

The classification accuracy and the training time for each dataset and CNN are shown in Table 3. The hyper-
parameters are set to their optimal values and in each case, the training and the testing are performed on subsets
of the same dataset. All four CNNs achieve high accuracy rates exceeding 95%. The training time of each network
depends on its depth and, on the number of images used in the training process. The largest (deepest) network,
MobileNet v2, takes the longest training time but in exchange, it yields the highest classification accuracy for
both datasets. Considering that the training procedure happens once, so far MobileNet v2 is the dominant CNN.
Regarding the two datasets, the classification results are quite similar with slightly better results being obtained for
the Forest-Fire dataset.

Table 3. Classification accuracy and training time per dataset and CNN with optimal training options.

SqueezeNet ShuffleNet MobileNet_v2 ResNet-50

Dataset Classification
accuracy (%)

Training
time (s)

Classification
accuracy (%)

Training
time (s)

Classification
accuracy (%)

Training
time (s)

Classification
accuracy (%)

Training
time (s)

Forest-Fire 97.11 45 97.89 68 98.95 151 97.63 166
Fire-Flame 95.00 77 96.00 90 97.50 164 96.00 175

In the case of mildly noisy images, Table 4 shows the results of classification accuracy with Gaussian and Salt
Pepper noise (in the parentheses are the drops in classification accuracy compared to the values in Table 3). For

omparison reasons, we have set both types of noise to have an average PSNR of approximately 15 dB.

Table 4. Classification accuracy per dataset and CNN for noised test images with PSNR = 15 dB.

(PSNR =

15 dB)
SqueezeNet ShuffleNet MobileNet_v2 ResNet-50

Dataset Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Forest-Fire 76.58
(−20.53)

86.05
(−11.06)

80.53
(−17.36)

87.63
(−10.26)

67.37
(−31.58)

85.26
(−13.69)

91.20
(−6.43)

94.58
(−3.05)

Fire-Flame 87.00
(−8.00)

87.00
(−8.00)

90.00
(−6.00)

91.00
(−5.00)

82.50
(−15.00)

89.50
(−8.00)

94.00
(−2.00)

94.50
(−1.50)
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Regarding the two noises, Gaussian noise causes more destructive results in classification accuracy than Salt &
epper noise. Concerning the two datasets, the Forest-Fire has an average decrease of classification accuracy around
9% with Gaussian noise and 9.7% with the Salt & Pepper. The Fire dataset appears to be less affected with an
verage decrease of classification accuracy about 7.8% and 5.4% with Gaussian and Salt & Pepper noise respectively.
s for the CNNs, ResNet-50 is more the robust to noise with an average decrease in classification accuracy around
.2%, followed by ShuffleNet with an average decrease of 9.7%, while the most vulnerable network to appear
obileNet v2 with an average decrease of 17.1%. So, taking into account the comparable results of Table 3 but

also the noise tolerance, ResNet-50 and ShuffleNet seem to be the best choices.
The results of classification accuracy for high level of noise, (PSNR of 10 dB) are shown in Table 5. For the light-

eight CNNs the classification accuracy drops rapidly and fluctuates around 50%. ResNet-50 results are slightly
etter for the case of Forest-Fire dataset, while in the Fire-Flame dataset Gaussian noise has less impact upon the
lassification accuracy (80.8%) than Salt & Pepper (72%).

Table 5. Classification accuracy per dataset and CNN for noised test images with PSNR = 10 dB.

(PSNR =

10 dB)
SqueezeNet ShuffleNet MobileNet_v2 ResNet-50

Dataset Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Gaussian Salt &
Pepper

Forest-Fire 50.00
(−47.11)

51.50
(−45.61)

50.26
(−47.63)

53.42
(−44.47)

50.00
(−48.95)

50.00
(−48.95)

63.2
(−34.43)

54.1
(−45.53)

Fire-Flame 49.50
(−8.00)

55.50
(−39.5)

57.00
(−6.00)

72.50
(−23.50)

49.00
(−15.00)

49.00
(−48.50)

80.8
(−15.20)

72.00
(−24.00)

The retrained CNNs are evaluated on images out of the training domain (cross-dataset). The “Unknown Images”
et is used first with clear images and then with highly noised (i.e. setting PSNR equal to 10 dB). In this way we
xamine a) whether ShuffleNet remains the dominant choice among the light-weight CNNs and b) whether either
ataset is more suitable for training (i.e. contains more strongly differentiated images). The results are presented in
able 6.

Table 6. Cross-dataset classification results on “Unknown Images” for clear and noised images.

Training dataset Forest-Fire Fire-Flame

CNN Test set Unknown Images Unknown Images

SqueezeNet
Clear Images 85.50 85.50
Gaussian 77.00 72.00
Salt & Pepper 67.00 61.00

ShuffleNet
Clear Images 90.00 90.00
Gaussian 71.50 71.00
Salt & Pepper 65.50 65.00

MobileNet_v2
Clear Images 86.50 86.00
Gaussian 71.50 71.00
Salt & Pepper 65.50 65.00

ResNet-50
Clear Images 85.50 85.50
Gaussian 82.50 79.00
Salt & Pepper 73.00 71.00

According to the values of Table 6, ShuffleNet yields the highest classification performance for the cross-dataset
est. It is also confirmed that ResNet-50 handles the effect of noises on images better. Regarding which set is more
uitable for training, the results are comparable with slightly increased percentages in the case of networks trained

n the Forest dataset.
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5. Conclusions and future work

Wildfires represent a significant risk factor of environment debasement and they have impact upon human lives
nd activities. The main objective is the prevention and the early detection of fires, and to this end progress has
een made in terms of a) electro-mechanical means able to retrieve images from geographically remote settings
such as UAVs) and b) of machine learning (ML) (especially CNN-based) means able to process figures and extract
nteresting information. These perspectives can be combined and offer near real time capabilities, with the constraint
f limited computational resources.

To this end we have designed a CNN-based system able to process images in order to identify fires and extract
ontext-based information through semantic segmentations. As the key constraint is the limitation of computational
esources, we have selected three lightweight CNNs (ShuffleNet, SqueezeNet, and MobileNet v2) and a larger

one (ResNet-50) for comparison purposes. In principle the CNNs can achieve high accuracy even under normal
conditions (i.e. using images of acceptable quality, without noise), with classification accuracy of more than 95%.

As a key particularity of the application of ML-based solution has been the limited availability of reusable
datasets related to wildfires, we have performed a series of tests involving noisy images (at two levels of PSNR) as
well as cross-dataset scenarios. For mild noise of up to 15 dB, light-weight CNNs (and especially the ShufleNet)
appear preferable as they achieve high classification accuracy and do not require a lot of computing resources. If
the noise is of a higher level and assuming that denoising mechanisms may improve the quality of the image for
human perception but the noise still affects the ML algorithms, larger networks (in terms of number of parameters)
have to be used. We have also observed that when the noise is at a moderate level the Gaussian causes affects more
the classification accuracy, while when the noise level increases to high levels the Salt & Pepper is proved to be
more destructive. In terms of the semantic segmentation, it has been verified that objects related to infrastructures
(e.g power generating plants, electrical connectors, posts and transformers for the supply of electricity and energy),
which are of interest in this work, exist in the main object detection sets (CamVid and COCO4) and the usage of
CNNs trained for object detection (namely based upon ResNet-18) has yielded acceptable results.

As future work, technologically, we will continue the experimentation with and evaluation of additional CNNs in
the area of fire identification. We will also work on semantic segmentation, with the aim of including further arbitrary
objects, not necessarily included in pre-existing datasets. Furthermore, the proposed system can be integrated with a
more holistic framework of fire prevention, detection, and extinction decisions. Such an example is presented in [33]
who propose customized risk levels global danger of a fire and over a limited area of the region. Another interesting
perspective is related to the prediction of the ‘extreme’ events [34]. Considering that the forest wildfires are such
extreme events. i.e., they occur rarely and arise from seemingly normal conditions, an ambitious goal would be a
prediction model for possible wildfires.
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