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Abstract

The satisfaction of the Quality of Service (QoS) levels during an entire service life-cycle is
one of the key targets for Service Providers (SP). To achieve this in an optimal way, it is
required to predict the exact amount of the needed physical and virtual resoutces, for
example, CPU and memory usage, for any possible combination of parameters that affect
the system workload, such as number of users, duration of each request, etc. To solve this
problem, the authors introduce a novel architecture and its open-source implementation
that a) monitors and collects data from heterogeneous resources, b) uses them to train
machine learning models and ¢) tailors them to each particular service type. The candidate
solution is validated in two real-life services showing very good accuracy in predicting the
required resources for a large number of operational configurations where a data
augmentation method is also applied to further decrease the estimation error up to 32%.
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1 | INTRODUCTION

Engineers have tried to find the optimal balance between the
devoted computational and networking resources per service
and the desired QoS since the beginning of telecommunication
systems. Although it is obvious that overallocation of resources
ensures higher QoS, this approach has a negative impact on the
economics of infrastructure operators. In contrast, resource
under-allocation can result in a violation of the Service Level
Agreement (SLA), which is considered unacceptable. The
definition of the “critical point,” where the allocated resources
ensure the agreed SLA with zero underutilisation, has proven
difficult. So, in most cases, the engineers have resorted to
resource over-allocation whilst trying to minimise the distance
between this over-allocation from the “critical point”.

At the same time, continuous efforts towards more dy-
namic, intelligent, and sophisticated network management so-
lutions have resulted in new concepts, like the Software
Defined Networking (SDN) and Network Function Virtuali-
sation (NFV) technologies, which are currently at their hype
[1]. In the NFV context, any Network Service (NS) (ex. Fire-
wall, CDN; router etc.) can be broken down into a chain of
Virtual Network Functions (VNF), which can be deployed on

machine learning, next generation networking, performance estimation, software defined networking

the same or different virtual infrastructures (NFVI) offering
high configuration flexibility to network operators. Meantime,
network operators struggle to maximise the benefits from their
infrastructures [2, 3]. To do so, they need mechanisms that can
predict in a reasonable time frame the necessary resources for
each running service per level of QoS. This requires knowledge
of the profile of each deployed service, which is on its own
another challenge as new types of services emerge every day.
This approach creates a dynamic and extremely complex
environment in which the resource allocation problem be-
comes more complex than ever, since decisions must be made
faster and at a finer level.

Another critical issue that must be considered is the het-
erogeneity of the modern datacenters infrastructure, in combi-
nation with the virtualisation technologies that are used. The
different types of equipment (i.e. physical servers, switches,
routers, etc.) are managed by hypervisors that provide virtual
network and computational resources (i.e., virtual machines,
virtual networks, containers, etc.). This mandates the monitoring
and management of the allocated resources at all three layers: the
physical, the vittual, and the setvice/application layer. The
monitoring of the first two layers is critical, as it can provide
knowledge about the impact of service workload on the system
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performance metrics, for example, CPU, disk, memory usage,
and can aid to avoid operating beyond the system's “critical
point”. Next, the monitoting of service/application layer pet-
formance metrics, for example, service time, is also critical as the
performance metrics can be directly related to QoS.

In this complex scene, Machine Learning (ML) based tools
can lead to optimal management of the available resources
[4-8]. Assuming that any type of service has specific charac-
teristics (i.e., different injection patterns), the service profile
can be automatically derived via ML techniques and thus, the
system can be equipped with the ability of “learning” new
service profiles as they emerge. These profiles are mandatory
for the definition of the resources that should be allocated to
satisfy the agreed QoS level. So, an automated process of
service profiling and network performance prediction can
assist the network operators to take a step forward in
improving the utilisation of their infrastructures without
sactificing QoS and/or setvice availability.

In prior art, ML and rule-based methods have been used to
predict the necessary resources based on data primarily
collected from virtual infrastructures [4, 6]. In particular, in [4],
four cases namely, a virtual router, a switch, a firewall and a
cache server were deployed and various algorithms spanning
from linear regression to artificial neural networks were
exploited to estimate CPU usage, packet loss and cache
response time under different operational conditions. Further,
in [6], ML techniques were trained to predict the workload
impact on CPU, total delay and number of VNF instances for
different services attaining very good accuracy along with low
estimation time. In the aforementioned works, only the data of
the virtual layer were exploited, while approaches that monitor,
collect, and exploit data from all implementation layers,
including physical, virtual, and service, are still in their infancy
[9-13] and under consideration. In particular, [9, 10] adopt
multi-layer monitoring and data collection mechanisms, how-
ever, without considering the use of ML, while in [11-13], ML
is adopted and the algorithms were optimised in a relatively
small number of data. In general, we could say that the validity
of the approaches of the literature is confined to only relatively
small number of services and infrastructures with small ca-
pacities, for example, with two real servers and VMs and only
one virtualisation technology. Also, fewer performance in-
dicators are predicted and in a much smaller set of service
configurations, which limits the adoption of more advanced
ML techniques to improve the achievable accuracy.

The motivation of our work is to address the open chal-
lenge which is elaborated in the next section and is the mini-
misation of assigned resources for each service instance while
ensuring the QoS. To address this challenge, we introduce a
novel mechanism that exploits the most recent open-source
network monitoring technologies, and we combine them
with ML techniques to automate the process and bring the
deployment parameters (resource allocation) closer to the
“critical point”. To examine the feasibility of the proposed
approach, we perform service profiling and performance
predictions in two well-known services, which are Hadoop and
a backend service, by collecting and analysing an extensive list

of monitoring metrics from physical and virtual infrastructure
namely CPU/memory usage, netwotk throughput, etc., and
performance metrics from the running services. This realises
the concept of multi-layer monitoring and holistic optimisa-
tion, as we monitor, collect, and exploit data from all three
layers, namely physical, virtual, and service. The modelling
methodology in these two selected services is of relatively low
complexity, allowing to obtain explainable and meaningful re-
sults that validate the efficacy of the candidate approach.

In the rest of the paper, in section 1I, we elaborate the
challenge we try to address, in section III, we introduce the
candidate solution, in section IV, we describe the sandbox
environment that we deployed to validate the proposed
mechanism and in section V, we discuss the obtained results.
Finally, section VI concludes the paper.

2 | PROBLEM DEFINITION

The most important challenge for service providers is to
minimise the number of allocated resources while ensuring the
agreed QoS. In the context of NFV, where various VNFs are
chained together to form an NS, the prediction of the exact
amount of the required resources, for example, CPU, memory,
service time etc., per service demand, at any time of its lifecycle
is not an easy process mainly a) due to the dynamic nature of
user's demands which require the infrastructure that hosts the
NS to be adapted in very short time intervals and b) due to the
vast number of performance metrics that need to be moni-
tored, from various layers of the infrastructure over the entire
service lifecycle.

To address this challenge, two main procedures are
required. The first incorporates monitoring probes to monitor
and collect data from three layers of the tested system. The
second is based on the collected data to train algorithms that
can predict the required system/network resoutces for a broad
gamut of operational scenarios and workloads, such as number
of requests, size of each request etc. An example of the first
procedure is illustrated in Figure 1. This figure illustrates the
impact of (a) small input workload and (b) large input workload
on various performance metrics of the tested environment that
hosts a NS. In the case (b), we can observe that two metrics,
one in virtual and one in physical layer, exceed the usage
threshold of 100% designating a clear “breaking point” of the
tested environment that can potentially lead to QoS violation.

3 | PROPOSED SOLUTION

The proposed architecture can be deployed in any datacentre,
which provides virtual computational and network resources
and in its typical form includes a) multiple hardware devices at
the physical (equipment) layer, b) virtual resources (VMs,
containers, SDN controllers) at the virtualisation layer and c)
application layer entities, which consist of the diverse services
that run on this node. In this work, the specified layers are not
related to the OSI-compliant layers. The proposed architecture
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FIGURE 1 Monitoring of system metrics in all three layers for
(a) small workload, for example, small number of requests and (b) large
workload, for example, large number of requests.

consists of two main components: (i) a cross-layer monitoring
service and (ii) a data analysis service.

The cross-layer data collection is realised by collecting data
from the “monitoring probes” at each of the three layers and
delivering them to the monitoring server (Figure 2). In more
detail, regarding the application layer, the performance of each
service can be easily measured by legacy monitoring solutions as
many application servers, databases, etc. already provide moni-
toring tools to expose performance metrics. The information
coming from the application layer is useful to define the break
points of a service, but in most cases, the correlation of a specific
failure with the actual cause is not straight forward.

The analysis service exploits the collected data to train
various ML regression algorithms, spanning from linear
regression to deep neural networks, which can accurately
predict the relation between specific workload (affected by
the number of concurrent requests, packet size, etc.) and the
required resources (CPU, memory, network bandwidth, etc.).
The overall accuracy depends on the adopted ML algorithm
as well as on the dataset because, in principle, the accuracy
improves with time, as the number of collected (and used for
training) data is increasing while the service runs. The
continuous training of the algorithms (apart from improved
accuracy) enables the system to profile any new service in the

Analysis Server 1

@

Monitoring Server !

Virtualization layer

Hypervisor Hypervisor

o g g g g

FIGURE 2 Data collection from the application, virtualisation and
physical layer.

future. As a result, the impact of the workload parameters
can be quantified for any possible resource configuration
scenario.

4 | EVALUATION IN A REAL LIFE
TESTBED

41 | The sandbox testbed

In order to validate the proposed architecture, we used a
sandbox environment consisting of two different physical
servers connected through a local ethernet network. The
technical specifications for the physical servers are as follows:
a) CPU: 4 CPUs x IntelR) Xeon(®) (CPU E3-1220 v6 @
3.00 GHz), b) RAM: 16 GB DDR4, ¢) HDD 8 TB d)
NETWORK: 2 x 1GbE LOM, and the networking device that
was used is the Cisco SG250 18 port Gigabit switch.

In the first server, we deployed all the components of the
proposed architecture using docker-composed scripts, and on
the second, following the same approach, we deployed the
under-test services and the monitoring agents (cAdvisor and
Netdata. i0). All the software tools were based on the latest
versions of container images from their open-source projects
(i.e., Prometheus. io, Netdata. io, cAdvisor, Apache Spark, etc.)
that make the proposed architecture reliable and re-deployable.
Furthermore, the adoption of the Prometheus monitoring
server prepares the proposed solution to integrate and collect
monitoring data from Kubernetes clusters.

After the setup of the proposed architecture, two separate
group of tests were performed using a) a Hadoop cluster and
b) a production set up of the backend setrvice consisting of a
set of three micro-services (application server, database, and
web server). The selection of the specific service types
was based on the fact that both Hadoop and backend
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implementations are widely used in the industry. The compo-
nents that were used in the proposed architecture are open-
source Cloud Native implementations. In more detail:

1) Monitoring Server:

The core component of the monitoring framework is
Prometheus. io server which stands as the central point of
event monitoring, storage and alerting. All metrics from the
three layers are collected, using a HTTP pull model, and stored
in a timeseties database. Some of the key features that make
this server suitable for the proposed architecture are (a) use of
a flexible query language (PromQL), which eases the inter-
connection with external systems (ex. Analytics module); (b)
existence of many opensource implementation (exporters) for
exposing monitoring metrics from various applications, and it
is also quite easy to create new ones; (c) autonomy as there is
no reliance on complex distributed storage mechanisms; and
(d) new monitoring targets can be easily added via reconfigu-
ration or using the file-based service discovery mechanisms.

Let us now turn our attention to the monitoting/probing
mechanisms of the three layers. For the physical layer moni-
toring, or the monitoting of the physical servers, we chose
Netdata. io, which is a powerful tool designed to collect a huge
list of metrics from every system and application in real-time.
For the virtual machines monitoring, the micro-services un-
der test are hosted in different VMs and to monitor their
performance we used a Netdata plugin specially designed to
collect metrics from vSphere ESXi. So, Prometheus collects
the target metrics from the Netdata for both physical and
virtual resources. Regarding the containers, we can easily
integrate the appropriate tools (ex. cAdvisor etc.) or we can
directly monitor Kubernetes cluster using Prometheus. For the
application layer, to monitor the performance of the service
under-test, we used two additional tools compatible with the
monitoring server (Prometheus). The first one is an additional
Django application that collects performance metrics from the
server and exposes them to the Prometheus server. The second
one is the Postgres exporter which also collects performance
metrics from the DB and exposes them to the Prometheus.

2) Analysis Server:

We employed 4 ML algorithms to find the relationship be-
tween the workload parameters and the target system metrics.
These ML algorithms are: Deep Neural Network (DNN), De-
cision Tree (DT), Random Forest (RF), and k-Nearest Neigh-
bours (k-NN). They were selected from a long list of ML
methods as the most suitable for our problem, as they provided
high modelling accuracy along with very low computational time.
Below, we briefly present the operation of the 4 ML methods.

a) k-Nearest Neighbours
K-NN algorithm is trained as follows. First, it calculates

the Fuclidean distances between a new data point and each of
the data points of the training set as follows:

(xi’] - x1)2 + (xi,z —x2)2 + ...+ (xln —xn)2
(1)

where the dependent variable y; is the target metric and the

d(ylaj}\) =

independent variables x;, x5 ..., X, are the input features, for
example, number of files and file size. Then, it selects the & y
points with the smaller Euclidean distance to calculate the
predicted y; value by taking their average.

b) Decision Tree

DT leads to a data organisation in a tree structure which
begins from the root node towards the leaf nodes, by asking each
time a question which has a binary answer, for example, yes/ no.
Every time a question is answered, new branches are created and
the feature space is segregated into disjoint regions. The selec-
tion of the optimal feature in each node and the proper question
are usually based on the feature with the highest information
gain. As a consequence, by selecting the proper number of tree
depth, a decision tree with a large number of nodes that can
provide estimations for the value y can be created.

¢) Random Forest

RF in essence comprises an ensemble of decision trees.
This forest is usually trained using the bagging method. The
main advantage of RF over DT is that multiple trees are
employed to provide a result instead of a single tree, as a large
number of uncorrelated trees operating as an ensemble can
provide a greater accuracy compared with an individual tree.

d) Deep Neural Network

DNN is a technique based on layers of inter-connected
neurons—in our case we exploit fully connected layers—that
are employed to solve regression problems accurately. One
key advantage of DNN is its ability to learn complex non-
linear relationships between the input data (independent vari-
ables xq, X, ... , x,,) and the output data (dependent variable ).
DNN uses an activation function in each neuron in order to
ignite it, which in our case is the Rectified Linear Unit (ReL.U).
One main disadvantage of DNN is that it usually requires a
large number of training data in order to provide accurate
results at its output.

For our ML predictions, we used Python (version 3.5) as
programming language, and specifically the Numpy library for
matrix multiplications, data preprocessing and segmentation,
the scikit-learn library for implementing the ML algorithms,
and the Keras high-level neural networks library using as
backend the Tensorflow library (version 2.0.0).

4.2 | Evaluation process

As an evaluation test for Hadoop, we exploited “testDFSIO”
in order to stress the deployed implementation while

85U80|7 SUOWLWIOD 3AIEa.D 8|qedl|dde aus Aq peusenod ae sajone O ‘8sn Jo SajnJ 10} AriqiT8ulUO A3[IA\ UO (SUOTPUCD-PUR-SWBI W00 A 1M ARe.q Ul |UO//:SAnY) SUORIPUOD pue SWwiB | 8u1 88S *[£202/90/.2] U0 ArIqITaulluO AB[IM ‘808819 8URIY0D AQ 0602T ZMIU/6Y0T OT/I0P/W00" A3 1M AfeIq 1 BUl [UO"Y0Jessa 1 1//:SNY W1} pepeo|umod ‘0 ‘29672102



UZUNIDIS ET AL.

monitoring data from all three layers, particularly from the
“testDFSIO” (service layer), hardware and virtual layers. The
“testDFSIO” is used to test the performance of NameNode
and network components in Hadoop Distributed File System
(HDFES) and was selected as it is an important test for the
Hadoop cluster providing an overall performance evaluation of
the examined service and a fast impression of how efficient the
cluster is in terms of IO. More details about “testDFSIO” can
be found in [11].

To stress the backend service, we employed Apache Bench,
which fits better to the under-test service and we used it to
transmit concurrent requests towards the examined service.
After the stress testing procedure, a large number of metrics are
collected from all three layers of the tested environment. At the
end of the test, the monitoring server collects information from
the test bench tool, which are related with the performance of
the under-test service (ex. statistics regarding the execution time
of the requests, number of requests per sec etc.).

After data collection in both sandbox implementations, the
number of recorded data are used to feed the ML algorithms
which, after the proper training, can provide predictions for
each resource type. For modelling purposes, we employed the
four aforementioned ML algorithms to mathematically relate
the input parameters, for example, the number of files and file
size, to the monitored metrics, for example, CPU and disk
usage.

5 | ML-AIDED PERFORMANCE
PREDICTIONS

5.1 | The backend service

5.1.1 | Profiling of critical system metrics

In order to highlight the need for data analysis coming from
multiple layers, we present the impact of the service stress test
to physical, virtual and service layer. In Figure 3, we present the
evolution of three metrics for different number of concurent
requests: the blue line represents the CPU usage of the VM#3
(Django/Nginx micto setvices), the green line denotes the
CPU usage of VM#4 (Postgress) and the red one describes the
CPU usage of the physical server. Next, in Figure 4, we illus-
trate the mean execution time of the requests, for 50%, 90%

__ 100 [ -
S 80 ——m N
Q
§ 60 A A== — k= -A
; 40 . M Physical Machine
o 20 K @ Virtual Machine #3
O A Virtual Machine #4
0
0 5 10 15 20

Numberof concurrentrequests

FIGURE 3 Impact of the number of concurrent requests on virtual
and physical layer metrics.

and 99% of the requests. These metrics were selected from a
wide list offered by the tool as the most recognised/comptre-
hensive for our audience. The stress test consisted of a total
number of 10,000 HTTP POST requests with a JSON payload
of 3 KB, containing 10,000 records. The same test was
executed with incremental number of concurrent requests to
push the service to the limit.

As it is evident from Figure 3, when the concurrency level
is about 10, the CPU usage of the web server (hosted in
VM#3) reaches its maximum, designating a system “critical
point”, whilst, at the same time, the CPU usage of the DB,
which is hosted in VM#4, is well below 100%. Thus, a
different CPU allocation scheme between the two VMs can
extend the system “critical point” and allow servicing a larger
number of concurrent users.

Turning our attention to the request execution time, shown
in Figure 4, this can provide insights about the efficiency of the
deployed scenario from a service perspective. The request
execution time increases with the number of concurrent re-
quests, as expected, as the requests experience longer waiting
times to be executed. Moreover, 99% of the requests (triangles,
purple) are served in less than a 100 ms time frame when 4
concurrent requests are considered, while half of the requests
(rectangular, light blue) are served in less than 100 ms even when
10 concurrent requests request for service. The knowledge of
this time is important for a service/network provider especially
in the context of Guaranteed Reliable Experience category of
services [14], as this time can be added to the end-to-end delay,
and if it exceeds a pre-specified threshold can potentially lead to
a QoS violation. As Figure 4 shows only a snapshot of these four
metrics for different concurrency levels, the service provider
must be able to dynamically predict the evolution of the most
critical performance metrics under many different operating
conditions and ML can significantly alleviate this task.

512 |
learning

Performance predictions using machine

In this section, we exploit the benefits of the ML analysis to
predict the behaviour of a backend service, in order to act
proactively to any potential change and ensure the requested
QoS. In Table I, we present a quantitative comparison between
the 4 ML algorithms that were employed. The number of

c 500 — A— 99% of service requests - A
o 400 90% of service requests e -
= —H— 50% of service requests Kk
§ = 300 T
xE 200 L — =
BE 100 TEs -
- —

= -K -
g 0
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Numberof concurrentrequests

FIGURE 4 Impact of the number of concurrent requests on an app/

service layer metric.
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measured data points used to feed the ML algorithms were 500
for each metric. We consider this number of data points suf-
ficient and as a consequence we omit data augmentation in this
case. The data points were attained by iterating over the
following parameters:

Number of concurrent requests:

[1,2,3,4,5,6,7,10,15,20]

Number of records in the DB:

[1,2,3,4,5,10,20,50,100] - 1000

Record size (kB):

0.18,1,3,5,7]

The similar procedure with the previous case in [11] is
followed here regarding the split of data in three sub-sets and
the training of the ML methods. The optimal hyperparameters
for each ML method are calculated using grid search in the
validation set. Table I tabulates the percentage error of the four
algorithms using the optimal hyperparameters as well as using
another hyperparameter value for comparison purposes. As it
is evident from Table I, the DT and RF outperform all other
ML algorithms, due to their ability to approximate functions
with floors with great efficiency (e.g. a floor in CPU usage is
100%y). This is more evident in the most difficult-to-predict
metric, which is the Network Bandwidth, as it reaches a
floor when the CPU usage reaches 100% (i.e. after 10 con-
current requests, in our case).

RF algorithm attains a maximum error of 6.7% in all five
metrics, outperforming DT due to the use of multiple trees.
Further, DNN exceeds 10% which can be attributed to the
relatively small number of training samples (300 in each case).
Next, k-NN shows comparable performance when k is set to
either 2 or 3 and the error is less than 15% in four out of five
cases. Finally, the number of estimators has marginal effect on
the predicted accuracy when RF is employed, as the accuracy
improvement is no greater than 1%.

The aforementioned analysis reveals that ML algorithms can
predict the performance of critical system metrics in the backend
service with very good accuracy, less than 6.7% average error in
all six metrics, for a large number of different operational con-
ditions, using only a small fraction of these conditions.

5.2 | The hadoop case

In this section, we discuss the results of the ML analysis on the
six metrics CPU usage, Disk Usage (physical layer), CPU usage,
Memory Usage (virtual layer), Throughput, Average 10 rate
(service/app layer). The data analysis is highly advantageous for
an SP as it can a) predict the behaviour of the examined system
for any combination of critical system features, such as the
number of files and file size not just those that have been pre-
viously tested, and b) designate additional system breaking

points to those identified during the profiling phase, for
example, the CPU usage on the node manager. This knowledge
can be exploited by the SP in two ways. First, the SP can gain a
clear knowledge about the breaking points of his deployed
system architecture, and avoid operating his system at these
points. Second, the prediction of the required resources under
different workload, if it is joined with a resource allocation
mechanism, can lead to an optimal use of the available resources,
directly offering a cost and energy consumption reduction.

The initial dataset comprises 55 data points which were
collected using the write test “testDFSIO” and are used to feed
the ML algorithms. The results of 6 ML algorithms in the six
metrics can be found in [11], confirming that ML algorithms
can accurately predict the performance of critical system
metrics, even when a minimal fraction of different system
conditions is available.

In this work, we progress beyond our previous work and
perform data augmentation to enrich the dataset in order to
improve the prediction accuracy. In particular, we consider
various curve fitting methods spanning from third order
polynomials to logarithmic functions, tailored to each specific
metric, for example, fitting the curves of Figure 3 of [11]. The
augmented data points were attained considering combinations
of the following parameters:

Number of files € [1,25].

File size (MB) € [100,1000].

Using this methodology, the dataset points are increased
from 55 to 440 for all six metrics. As an ML algorithm and in
order to examine the impact of data augmentation we
employed k-NN algorithm as it attained the lowest error in the
two service layer metrics, which was shown in [11] that they
were the most difficult to predict. In particular, the main
advantage of using k-NN in case of data augmentation is that
the number of data points which have a smaller Euclidean
distance are increased, compared with the initial dataset,
leading to more accurate predictions.

It is worth mentioning that the augmented data have been
exploited to improve the training and validation sub—sets only,
while as testing cases, we considered only the initial 55 cases.
During training and evaluation procedure, a circular rotation
between the training, validation and testing cases was performed.
The optimal value of £ was found using the validation set and was
equal to 2 for the physical and virtual layer metrics and equal to 1
for the service layer metrics. In the final step, the test sub-set was
used to perform the ML predictions and then the predicted
values were compared against the actual ones for each metric.
The prediction error was calculated using the average absolute
relative percentage error in order to attain comparable results
across all the metrics and ML methods, as follows:

n D
! ZL’ %l 1009 2)
ne=

where y; is the value of the ith point which was measured using
our three-layer architecture, y; is the predicted value using
k-NN and 7 is the total number of points.
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TABLE 1 Prediction error attained with 4 ML algorithms when they are applied to five system metrics.

DT RF k-NN DNN

# of neurons/layer,
Hyper-parameters Tree depth # of estimators # of —k neighbors # of layers
Value 4 6 3 5 2 3 4,2 8,2
CPU usage (%) VM3 6.5% 4.6% 4.32% 3.9% 8.4% 8.6% 12.2 10.8%
CPU usage (%) VM4 6.2% 8.1% 7.3% 6.6% 11.8% 12.5% 18% 15.5%
CPU usage (%) PM 4.5% 3.1% 3.4% 2.7% 7.7% 8% 11% 9.9%
Value 6 8 10 20 2 3 8,2 16, 2
Network bandwidth 10.9% 7.8% 7.2% 6.7% 28.7% 30% 30.4% 31.1%
Value 8 10 5 10 2 3 4,2 8,2
Execution time 90% 7.6% 6.4% 6.1% 5.6% 11.3% 11.9% 14.2% 12.2%

40%  =AR=0%
AR =50%

" AR=75%

"AR=87.5%

20%
o HEHN

CPU usage Disk usage CPU usage Memory Throughput Average /O
usage NM rate

w
S
B

Percentage Error

Measured Metric

FIGURE 5 Impact of data augmentation on six studied metrics when
k-NN algorithm is employed.

The impact of data augmentation is illustrated in Figure 5.
As an Augmentation Ratio (AR) we introduce the following
metric:

Augmented Data L00% 3)

" Total Training Data

where the augmented data parameter includes the number of
augmented data in the training set and the total training data
parameter contains a) the number of augmented data and b)
the “original” data points in the training set.

As can be seen in Figure 5, data augmentation reduces the
prediction error in all six metrics. In particular, when an AR of
87.5% is considered, the error reduction is 1.80%, 3.32%,
3.71%, 2.95%, 7.28% and 8.77% in the CPU usage, Disk
Usage, CPU usage, Memory Usage, Throughput and Average
1O rate, respectively. This means that up to 32% lower error
compared with the case of zero augmentation ratio can be
attained, showing that data augmentation using curve fitting
can be a capable solution, especially when the number of
collected data is small. Finally, this dataset size inctease can
allow the use of more complex ML algorithms, such as deep
neural networks, which require a greater number of input data
and have the potential to provide an even higher prediction
accuracy. Based on the encouraging results presented here, this
approach could be adopted towards realising the Zero touch
network & Service Management (ZSM) approach under

standardisation in ETSI [15]. Automating the self-management
of the network is at the core of this vision and the adoption of
our proposed approach would definitely contribute to this
direction. Namely, combining our approach with federated
learning architectures like the one presented in [16], where
security is also addressed, would contribute to the creation of
automated self-managed network infrastructures.

6 | CONCLUSIONS AND FUTURE
WORK

We have developed a solution that first performs multi-layer
monitoring of an infrastructure that hosts a network service.
Second, it exploits the collected data to feed various ML algo-
rithms aiding to reveal potential “critical points” of the system,
which may cause system failure, and also to identify the exact
cause that is responsible for each failure. This is a very impor-
tant knowledge for service providers as it can trigger them to act
proactively to avoid the system's “critical points”, ensuring an
optimal utilisation of their resources while guaranteeing a
certain level of QoS. The candidate approach is based on open-
source tools that enable automated service profiling and per-
formance predictions using ML and has been validated in two
well-known services, namely Hadoop and a backend service,
showing very good accuracy in both cases. Finally, via using a
data augmentation technique, the estimation error could be
reduced by up to 32% compared with the case without data
augmentation, showing that sufficient accuracy can be attained
even in cases with a limited amount of available data.

In future, we plan to test our implementation with services
in additional representative areas, such as media apps, secutity,
etc. In addition, we want to train online ML methods for new
NSs, as well as combine the proposed architecture with some
of the open-source MANO frameworks to create a totally
autonomous management system fit for deployment in the
NFV environment. Another research avenue to pursue is to
address open research challenges with respect to next genet-
ation computing proposed in [17], where some indicative are as
follows: exploit ML approaches for security vulnerabilities
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forecasting in the fog layer, employ ML methods for enhancing
the delay and reaction time of tasks in serverless computing for
Internet of Things applications, train ML for the optimisation
of edge systems leveraging vast number of data while main-
taining the operational efficiency and estimation time, provide
benefits using ML in Servetless systems from threat mitigation
strategies, etc.
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